P425/1 PURE MATHEMATICS PAPER 1 JULY 2017 3 HOURS

ST. JOSEPH OF NAZARETH HIGH SCHOOL UGANDA ADVANCED CERTIFICATE OF EDUCATION INTERNAL MOCK EXAMINATION 2017 PURE MATHEMATICS PAPER 1 3 HOURS

INSTRUCTIONS:

- Answer all the questions in Section A and only five questions in Section B.
- Show all necessary working clearly.
- Silent, non-programmable scientific calculators and mathematical tables with a list of formula may be used.

SECTION A (40 MARKS) Attempt all questions from this section.

1. If $\frac{2+\sqrt{2}}{2-\sqrt{2}} + \frac{1-\sqrt{2}}{1+\sqrt{2}} = a + b\sqrt{2}$ Find the values of *a* and *b*. (5 marks)

2. The ninth term of an arithmetic progression is twice the third term, and the fifteenth term is 27. Evaluate the sum of the first 25 terms of the series. (5 marks)

(5 marks)

- 3. Differentiate $x^{\cos x}$ with respect to *x*.
- 4. Evaluate the definite integral $\int_0^1 x \tan^{-1} x \, dx$ (5 marks)
- 5. Solve the equation $3\cos 2\theta 7\cos \theta 2 = 0$ for $0^\circ \le \theta \le 360^\circ$. (5 marks)
- 6. Find the equation of the circle which touches the line 3x 4y = 3 at the point (5,3) and passes through the point (-2,4). (5 marks)
- 7. The roots of the equation $x^2 + px + 7 = 0$ are \propto and β . Given that $\propto^2 + \beta^2 = 22$, find the possible values of p. (5 marks)

8. Prove that $\log_a x = \frac{1}{\log_x a}$. Hence solve the equation $\log_{10} x + \log_x 100 = 3$ (5 marks)

SECTION A (60 MARKS) Answer any five questions from this section.

9. (a) If z = x + iy, determine the Cartesian equation of the locus given by $\left|\frac{(z-1)}{(z+1-i)}\right| = \frac{2}{5}$ (6 marks)

(b) Sketch the loci defined by the equations:

(i)
$$\arg(z+2) = \frac{-2\pi}{3}$$

(ii) $\arg\left(\frac{z-3}{z-1}\right) = \frac{\pi}{4}$
(6 marks)
4 $\tan\theta(1-\tan^2\theta)$

10.(a) Prove that $\sin 4\theta = \frac{4tan\theta(1-tan^2\theta)}{(1+tan^2\theta)}$ (6 marks)

(b) Solve the equation $\tan^{-1}(1 + x) + \tan^{-1} 1 - x = \frac{\pi}{4}$ (6 marks)

11. Find the coordinates of any maxima, minima and points of inflexion of the function $y = \frac{3x-1}{(4x-1)(x+5)}$ that it may have. Hence sketch the curve $y = \frac{3x-1}{(4x-1)(x+5)}$

(12 marks)

- 12.(a) Find $\int x \sqrt{(1-x^2)} \, dx$
 - (b) Express $\int_0^1 \frac{x^2 + x + 1}{(x+1)(x^2+1)} dx = \frac{3}{4} \ln 2 + \frac{\pi}{8} (9 \text{ marks})$
- 13. (a) Find the particular solution of the differential equation $xy \frac{dy}{dx} = x^2 + y^2$.

Given that y = 2, when x = 1(6 marks)

(b) A lump of radioactive substance is disintegrating. At time t days after it was first observed to have the mass of 10 grams and $\frac{dm}{dt} = -km$ where k is a constant. Find the time, in days for the substance to reduce to 1 gram in mass, given that its half –life is 10 days. (The half – life is the time in which half of any mass of the substance will decay.) (6 marks)

- 14. (a) Find the values of *m* for which the line y = mx is a tangent to the circle $x^2 + y^2 + fy + c = 0$ (3 marks)
 - (b) Find the points where the line 2y x + 5 = 0 meets the circle $x^2 + y^2 4x + 3y 5 = 0$ Obtain the equation of the tangents and normal to the circle at these points(6 marks)
- 15. (a) Show that the points A,B and C with position vectors 2i + 3j, 4i + 5j, 6i + 9j respectively are the vertices of a triangle. Find the area of the triangle.
 (5 marks)

(b) Find a vector *r* perpendicular to the vectors s = 5i + 3j + k and t = -i + 3j + 2k.

Hence, find the equation of a plane passing through the point A(5, -1, -2) and parallel to s and t. Find the angle between the plane and the line

 $\frac{x-2}{1} = \frac{y-2}{2} = \frac{z-2}{3}$ (7 marks)

16. (a) If
$$y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$
 show that $\frac{dy}{dx} = \frac{1}{1+x^2}$ (6 marks)

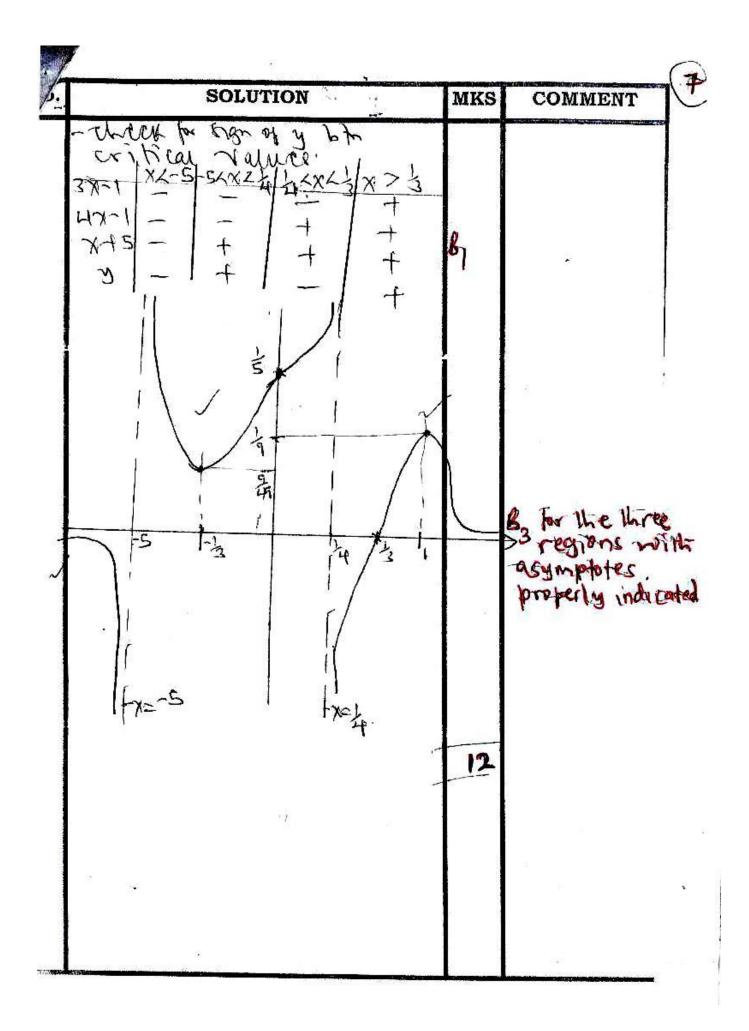
le i

$$\frac{1}{12} \frac{MARKING GUIDE FOR PH2511 INTERNAL MOCK 2017SOLUTION ST. JONAHS MIKS COMMENT
$$\frac{12}{2+12} + 1-12 = a + bV2
2-12 j (1+12) = a + bV2
(2+12) (2+12) + (1-13)(1+12) = a + bV2
(2+12) (2+12) + (1-13)(1+12) = a + bV2
(2+12) (2+12) + (1+12)(1+12)
H+112 + 2 + 1-2(2+2) = a + bV2
H+112 + 3 + 2V2 = a + bV2
 $2 + 3 + 2V2 - 3 + 2/2 = a + b/2$
 $2 + 3 + 2V2 - 3 + 2/2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $2 + 3 + 2V2 - 3 + 2/2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $2 + 14V2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $2 + 14V2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $4 + 12 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $4 + 12 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $4 + 12 = a + b/2$
 $3 + 2V2 - 3 + 2/2 = a + b/2$
 $4 + 12 = 27$
 $4 - 21 = 32$
 $4 - 21$
 $5 + 25 = 25 (-2 + 2 + 12 + 2)$
 $4 - 21 = 32$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 22 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 12 + 2)$
 $4 - 2 = 25 (-2 + 12 + 2)$
 $4 - 2 = 2 + 2 + 2$
 $4 - 2 = 2 + 2 + 2 +$$$$$

10. SOLUTION MKS COMMENT
3. Let
$$y = \chi COSN$$

Taking Logarillims to base e
 $Lny = ln \chi CasX$
 $\Rightarrow lny = los \chi ln \chi$
 $y = ln \chi = d los \chi ln \chi$
 $y = \frac{1}{3} \frac{dy}{dy} = \frac{1}{d los \chi ln \chi}$
 $\frac{1}{3} \frac{dy}{dy} = -\frac{1}{d los \chi - \chi fin \chi ln \chi}$
 $\frac{1}{3} \frac{dy}{dy} = \frac{1}{2} \frac{(Los \chi - \chi fin \chi ln \chi)}{\chi}$
 $\frac{dy}{dy} = \frac{1}{\chi} \frac{(Los \chi - \chi fin \chi ln \chi)}{\chi}$
 $\frac{dy}{dy} = \chi \frac{(Los \chi - \chi fin \chi ln \chi)}{\chi}$
 $\frac{dy}{dy} = (Los \chi - \chi fin \chi ln \chi)$
 $\frac{dy}{dy} = (Los \chi - \chi fin \chi ln \chi) \chi$
 $\frac{dy}{dy} = (Los \chi - \chi fin \chi ln \chi) \chi$
 $\frac{dy}{dy} = (Los \chi - \chi fin \chi ln \chi) \chi$
 $\frac{dy}{dy} = (Los \chi - \chi fin \chi ln \chi) \chi$
 $\frac{dy}{dy} = \frac{1}{\chi} \frac{1}{\chi}$
 $\frac{dy}{d\chi} = \frac{1}{\chi} \frac{1}{\chi}$
 $\frac{dy}{d\chi} = \frac{1}{\chi} \frac{1}{\chi}$
 $\frac{dy}{d\chi} = \frac{1}{\chi} \frac{1}{\chi}$
 $\chi = \frac{1}{\chi} \frac{1}{\chi}$
 $\chi = \frac{1}{\chi} \frac{1}{\chi}$
 $\chi = \frac{\chi^2}{\chi}$
By findux \chi

SOLUTION MKS COMMENT 2 Vhong integration by parts Judy dx=UN-JN dy dx SIXtan'xdx=2x2tan'x-2(x2tx) M substr TO (x2 dat $\frac{1}{\chi} = \frac{1}{2} \tan^2 \theta$ $\chi = \frac{1}{2} \tan \theta$ $\frac{1}{\chi} = \frac{1}{2} \frac{1}{2$ =) (<u>tan</u>); stcddo -) (tan); do -) (stcd-1) do -) (stcd-1) do $= \int [x^2 + dy] = x - bant x + c$ By for SAT Superint in & = {x tour x dx = 1x2 tour x - 2 [x - tour x]+c $\int x \tan^2 x dx = \left[\frac{1}{2} x^2 \tan^2 x - \frac{1}{2} x + \frac{1}{2} \tan^2 x + \frac{1}{2} \tan^$ = 13号子号(6) $= \int \frac{1}{x} \tan^{1} x dy = \int \frac{1}{y^{2}} = \frac{1}{2} = \frac{1$ A = X + tantx +


ło.	SOLUTION	MKS	COMMENT	
	370520-70050-2 -0 =>3(20050-1)-7000-2 ~0 6 0050-70000-2 ~0	B		
	$ \begin{array}{l} 2.44 \chi = 0.050 \\ = 3 6\chi^2 - 7\chi - 5 = 0 \\ = 3 6\chi^2 - 10\chi + 3\chi - 5 = 0 \\ = 3 6\chi^2 - 10\chi + 3\chi - 5 = 0 \\ = 3 \chi (3\chi - 5) + 1(3\chi - 5) = 0 \\ = 12\chi + 1)(3\chi - 5) = 0 \end{array} $	M		
	2x+1=0 \$ 3x-5=0 y=-2 x = 53 The toso 2-2 0 = tosi 1-21/		in a start of the	ĩ
ſ.	\$ = 120°, 240° Fri 1080 = 53 10 15 undefined.	A, A1 B1	*	
· 6 ·	v his the equation of the wide 22-tyl + 29x+2fy+C=0			
5 4	At print (5,3) => 109 +6 & +c = -340 At print (-2,4) -49+86+ c = -20 @ -49+86+ c = -20 @ -49-186+ c = -20 @	B	for 0 \$ ©	х
	149-26 =-14 => 79-8 =-73			

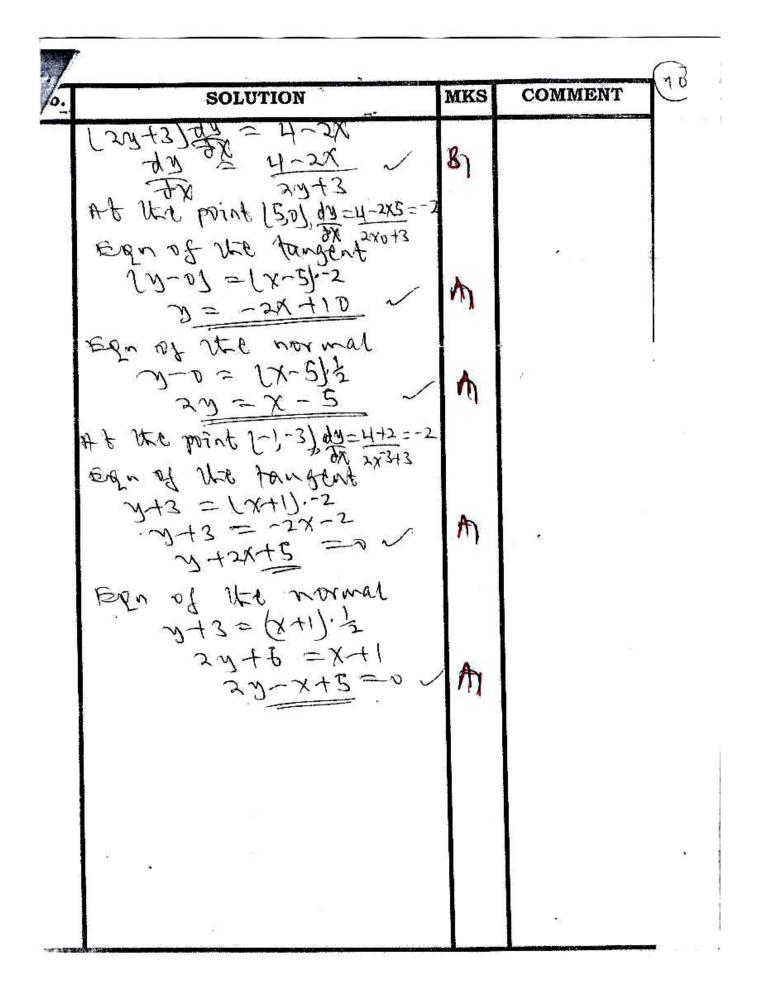
SOLUTION COMMENT MKS 3 For line 3x 4y= B => 34 = -<u>5-9</u> 3+f => 9+35 = -20-49 => 49+35 = -29 -- () von 3()+(4) Nony 3(3) + (4) 219-36=-21 + 49-136=-29 The destriction of the tring The ten of the tring x²+y²-4x-14y+28=0. By for 3, f \$ c

Io.	SOLUTION	MKS	COMMENT
ナ	$\chi^{2} + p\chi + 7 = 0$ $d + b = -p \times db = 7^{-1}$ $d^{2} + b^{2} = [d + b]^{2} - 2db$ $\Rightarrow 22 = p^{2} - 14$ $p^{2} = 36$	B1 M1 M1	subst
Ø,	p=tb	M A	(values of P)
	Het $y = \log \frac{\pi}{2}$ $\log \frac{\pi}{2} = \log \frac{\pi}{2}$ $\log \frac{\pi}{2} = \log \frac{\pi}{2}$ $\log \frac{\pi}{2} = \log \frac{\pi}{2}$ $\log \frac{\pi}{2} = \log \frac{\pi}{2}$	m	Taking Logs to bate x
	1 US3X	BJ	
	Los x + 105,100 = 3 => 1.05, x + 105,102 = 3 200 x + 105,102 = 3		
	205, 7 + 27 - 3 105, 7 - 105, 7 24 p = 105, 7 = 2 p + 2 = 3		
	=> p+3, =3 p=+2, =3 p=-3p+2=0 p2-2p-p+2=0 p[p-2]-1[p-2]=0		
	2p-132p-25=0 2p-132p-25=0 => 205 x =1 => 205 x =1	m	
	$= \frac{10}{10} \times = \frac{10}{2}$ $\frac{10}{10} \times = \frac{10}{2}$	A	
8 9	x = 100 ~	A	
NUX SALAR			

10. SOLUTION MKS COMMENT b $tan[x+t] + tan^{-1}(1-x] = II$ Let $A = tan^{-1}(1+x) = tanAI(1+x)I$ $B = tan^{-1}(1+x) = tanAI(1+x)I$ $D = tan^{-1}(1-x) = tanBI(1+x)I$ $D = tan^{-1}(1-x) = tanBI(1+x)I$ Tan(A+B) = Tan II tan(A+B) = tan IIB By tan A -f. tans -1-tan Atan B M $1 = \frac{y - k + x + 1}{y - k}$ My $\frac{1 - (1 + x)(1 - x)}{1 - (1 - x)} = 1$ $\frac{2}{\chi^2} = 1$ $\chi^2 = 2$ $\chi = \pm \sqrt{2}$ $\chi = \pm 1.414$ M

$\frac{(4)x(1)(x+5)}{4} + \frac{4x^{2} + 19x-5}{4} + \frac{19x-5}{4} $	$\begin{array}{l} (\mu \chi 1) [\chi + 5] (\mu \chi^{2} + 19 \chi - 5) \\ -44 u = 3 \chi - 1, v = 4 \chi^{2} + 19 \chi - 5 \\ -44 u = 3 + u = 8 \chi - 119 \\ \hline \partial \chi = 3 + u = 8 \chi - 119 \\ \hline \partial \chi = 3 + u = 8 \chi - 119 \\ \hline \partial \chi = 12 \chi^{2} + 57 \chi - 15 - [34 \chi^{2} + 19 \chi - 5]^{2} \\ = 12 \chi^{2} + 57 \chi - 15 - [24 \chi^{2} + 19 \chi - 5]^{2} \\ \hline -12 \chi^{2} + 3 \chi - 4 \\ \hline 14 \chi^{2} + 19 \chi - 5]^{2} \\ \rightarrow -12 \chi^{2} + 3 \chi - 4 \\ \hline 14 \chi^{2} + 19 \chi - 5]^{2} \\ \rightarrow -12 \chi^{2} + 3 \chi - 4 \\ \hline 14 \chi^{2} + 19 \chi - 5]^{2} \\ \rightarrow -12 \chi^{2} + 3 \chi - 4 \\ \hline 14 \chi^{2} + 19 \chi - 5]^{2} \\ \rightarrow -12 \chi^{2} + 3 \chi - 4 \\ \hline 3 \chi^{2} - 2 \chi - 1 = 0 \\ \hline 3 \chi^{2} - 3 \chi + \chi - 1 = 0 \\ \hline 3 \chi^{2} - 3 \chi + \chi - 1 = 0 \\ \hline \end{array}$	$ \begin{array}{l} \left(\frac{14}{x^{-1}} \right) \left[\frac{1}{x^{+5}} \right] & \frac{4}{y^{2} + 19x^{-5}} \\ -4t & u = 3x^{-1}, v = 4x^{2} + 19x^{-5} \\ -4u & = 3 \\ \frac{4u}{y^{2}} & = 3x^{-1} + 19 \\ -3x^{-1} & \frac{4u}{y^{2} + 19x^{-5}} \right] \left[\frac{3x^{-1} + 18x^{-5} + 19x^{-1} + 19x^{-1}}{14x^{2} + 19x^{-5}} \right] \\ = \frac{12x^{2} + 57x^{-1} + 5 - (24x^{2} + 44x^{2} + 49x^{-1} + 19x^{-1})}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{2} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{14x^{-1} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{12x^{-1} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{12x^{-1} + 19x^{-5}} \\ = -\frac{12x^{2} + 3x^{-4} + 4}{12x^{-1} + 12x^{-1}} \\ = \frac{12x^{2} - 3x^{-4} + 3x^{-4} + 4}{14x^{-1} + 12x^{-1}} \\ = \frac{12x^{2} - 3x^{-4} + 3x^{-4} + 4}{14x^{-1} + 14x^{-1}} \\ = \frac{12x^{2} - 3x^{-4} + 3x^$	$ \begin{array}{l} \left[\mu(x_{1}) \right] \left[\chi(+5) \right] \mu(\chi^{2}+1) q_{X} - 5 \\ + 4 & \mu = 3 \\ + 1 & \mu = 3 \\ + 2 \\ + 2 \\ + 3 \\ + 3 \\ + 4 \\ - 3 \\ + 4 \\ - 3 \\ + 4 \\ - 3 \\ + 4 \\ - 3 \\ - 12 \\ - 12 \\ - 12 \\ - 12 \\ - 12 \\ + 4 \\ - 14 \\ - 12 \\ + 19 \\ - 5 \\ - 12 $	$ \begin{array}{l} (\mu_{X}+1)[X+5] & \mu_{X}^{2}+19X-5 \\ tu = 3 & tv = 3\chi + 19 \\ tu = 3 & tv = 3\chi + 19 \\ tx = 3[\mu_{X}^{2}+19X-5](3\chi + 1)[3\chi + 19] \\ tx = \frac{12\chi^{2}+5[\chi - 15-(2\mu_{X}^{2}+\mu_{9}\chi - 5)]^{2}}{[\mu_{X}^{2}+19\chi - 5]^{2}} \\ = \frac{12\chi^{2}+5[\chi - 15-(2\mu_{X}^{2}+\mu_{9}\chi - 5)]^{2}}{[\mu_{X}^{2}+19\chi - 5]^{2}} \\ tx = \frac{12\chi^{2}+3\chi + 14}{[\mu_{X}^{2}+19\chi - 5]^{2}} \\ tx = \frac{12\chi^{2}+3\chi +$	SOLUTION No- 11	MKS	COMMENT
$\frac{\pi x}{2} = \frac{3}{2} \frac{\pi y}{2} = \frac{3}{2} \frac{\pi x}{2} + \frac{3}{2} \pi $	$\frac{\pi u}{\partial x} = \frac{1}{3} \frac{\pi u}{\partial x} = \frac{3}{3} \frac{\pi u}{\partial x} = \frac{3}{3} \frac{\pi u}{\partial x} = \frac{3}{3} \frac{\pi u}{\partial x} + \frac{3}{3$	$\frac{du}{dx} = 3 \frac{dv}{dx} = 8\chi + 11$ $\frac{du}{dx} = 3[4\chi^{2} + 19\chi - 5] - [3\chi - 1][8\chi + 19]$ $= \frac{12\chi^{2} + 57\chi - 15 - [24\chi^{2} + 149\chi - 5]^{2}}{[4\chi^{2} + 19\chi - 5]^{2}} \qquad M_{1} \frac{d\chi}{dx}$ $= -\frac{12\chi^{2} + 3\chi + 44}{[4\chi^{2} + 19\chi - 5]^{2}} \qquad M_{1} \frac{d\chi}{dx}$ $= -\frac{12\chi^{2} + 3\chi + 44}{[4\chi^{2} + 19\chi - 5]^{2}} \qquad M_{1} \frac{d\chi}{dx}$ $= -\frac{12\chi^{2} + 3\chi + 44}{[4\chi^{2} + 19\chi - 5]^{2}} \qquad M_{2} \frac{d\chi}{dx}$ $= -\frac{12\chi^{2} + 3\chi + 44}{[4\chi^{2} + 19\chi - 5]^{2}} \qquad M_{2} \frac{d\chi}{dx}$ $= -\frac{12\chi^{2} + 3\chi + 44}{[4\chi^{2} + 19\chi - 5]^{2}} \qquad M_{2} \frac{d\chi}{dx}$	$\frac{du}{dx} = \frac{1}{3} \frac{du}{dx} = \frac{3}{3} \frac{du}{dx} = \frac{3}{3} \frac{1}{3} $	$\frac{du}{dx} = \frac{1}{3} \frac{du}{dx} = \frac{3}{3} \frac{du}{dx} = \frac{3}{3} \frac{1}{3} $	14x1)(x+5) 4x2-+19x-5		-
$= -\frac{12\chi^{2} + 3\chi + 4}{14\chi^{2} + 19\chi - 5)^{2}} M = \frac{1}{14\chi^{2} + 19\chi - 5)^{2}} M = \frac{1}{14\chi^{2} + 19\chi - 5)^{2}} M = \frac{1}{12\chi^{2} + 3\chi + 4} = $	$= -\frac{12\chi^{2} + 3\chi^{-4} + 4}{14\chi^{2} + 19\chi^{-5}}$ At turning points, $\frac{14\chi^{2} + 19\chi^{-5}}{12\chi^{2} + 3\chi + 4}$ $= -\frac{12\chi^{2} + 3\chi^{-4} + 4}{14\chi^{2} + 19\chi^{-5}}$ $= -\frac{12\chi^{2} + 3\chi^{-4} + 4}{14\chi^{2} + 19\chi^{-5}}$ $= -\frac{12\chi^{2} + 3\chi^{-4} + 4}{3\chi^{2} - 2\chi^{-1}}$ $= 3\chi^{2} - 3\chi^{-2} + 3\chi^{-1} = 0$ $= 3\chi^{2} - 3\chi^{-2} + 3\chi^{-1} = 0$	$ = -\frac{12x^{2} + 3x^{4} + 4x^{-5}}{14x^{2} + 19x^{-5}} M $ $ = \frac{14x^{2} + 19x^{-5}}{14x^{2} + 19x^{-5}} M $ $ = \frac{12x^{2} + 3x + 44}{14x^{2} + 19x^{-5}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 44}{14x^{2} + 19x^{-5}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 44}{14x^{2} + 19x^{-5}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 44}{14x^{2} + 19x^{-5}} = \frac{12x^{2} + 3x^{2} + 44}{14x^{2} + 19x^{-5}} = \frac{12x^{2} + 3x^{2} + 4x^{-1}}{12x^{2} + 3x^{2} + 3x^{-1}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 3x^{-1}}{12x^{2} + 3x^{2} + 3x^{-1}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 3x^{-1}}{12x^{2} + 3x^{2} + 3x^{-1}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 3x^{-1}}{12x^{2} + 3x^{2} + 3x^{-1}} = \frac{12x^{2} + 3x^{2} + 3x^{2} + 3x^{-1}}{12x^{2} + 3x^{2} + 3x^{-1}} = \frac{12x^{2} + 3x^{2} + 3x^$	$= -\frac{1}{12x^{2} + 3x^{4} + 4} \qquad M \qquad H \qquad H \\ = -\frac{1}{14x^{2} + 3x^{4} + 4} \qquad M \qquad H \\ = 0 \qquad M \qquad H \\ = -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad M \\ = 0 \qquad -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{2} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4$	$= -\frac{1}{12x^{2} + 3x^{4} + 4} \qquad M \qquad H \qquad H \\ = -\frac{1}{14x^{2} + 3x^{4} + 4} \qquad M \qquad H \\ = 0 \qquad M \qquad H \\ = -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad M \\ = 0 \qquad -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{12x^{2} + 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{2} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4} = 0 \qquad H \\ = -\frac{1}{3x^{4} - 3x^{4} + 4$	$\frac{du}{dx} = \frac{3}{2} \frac{du}{dx} = \frac{3}{2} \frac{du}{dx} = \frac{3}{2} \frac{1}{2} $		•
$= 2 - \frac{14x^{2} + 19x - 5j^{2}}{-12x^{2} + 3x + 4} = 0$	$= 2 - \frac{14x^{2} + 19x - 5j^{2}}{3x^{2} - 2x - 1} = 0$ $= 3x^{2} - 2x - 1 = 0$ $= 3x^{2} - 3x + x - 1 = 0$	$\frac{14x^{2}+19x-5j^{2}}{-12x^{2}+3x+4}=0$ $3x^{2}-2x-1=0$ $3x^{2}-3x+x-1=0$	$\frac{1}{14x^{2}+19x-5]^{2}}{3x^{2}+3x+44=0}$ $\frac{3x^{2}-3x+x-1=0}{3x(2-2x-1)=0}$ $\frac{3x(2-1)+1(x-1)=0}{1(x-1)(3x+1)=0}$ $\frac{1}{1x-1}(3x+1)=0$	$\frac{1}{14x^{2}+19x-5]^{2}}{3x^{2}+3x+44=0}$ $\frac{3x^{2}-3x+x-1=0}{3x(2-2x-1)=0}$ $\frac{3x(2-1)+1(x-1)=0}{1(x-1)(3x+1)=0}$ $\frac{1}{1x-1}(3x+1)=0$	1. 26. 512	1 1	¥X
$= 2 - 12x^2 + 8x + 4 = 0$	$= \frac{-12x^{2}+3x+4}{3x^{2}-2x-1} = 0$ $= \frac{3x^{2}-3x+x-1}{3x^{2}-3x+x-1} = 0$	$= -\frac{12x^{2}+3x+4}{3x^{2}-2x-1} = 0$ $= -\frac{3x^{2}-2x-1}{3x^{2}-3x+x-1} = 0$	$\frac{2}{3\chi^{2}-3\chi} + \frac{3\chi}{4\chi} - 1 = 0$ $\frac{3\chi^{2}-3\chi}{4\chi} + \frac{1}{1} = 0$ $\frac{3\chi[\chi-1]}{1\chi} + \frac{1}{1} + \frac{1}{1} = 0$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{\chi} = -\frac{1}{3}$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{\chi} = -\frac{1}{3}$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{\chi} = -\frac{1}{3}$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{1} +$	$\frac{2}{3\chi^{2}-3\chi} + \frac{3\chi}{4\chi} - 1 = 0$ $\frac{3\chi^{2}-3\chi}{4\chi} + \frac{1}{1} = 0$ $\frac{3\chi[\chi-1]}{1\chi} + \frac{1}{1} + \frac{1}{1} = 0$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{\chi} = -\frac{1}{3}$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{\chi} = -\frac{1}{3}$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{\chi} = -\frac{1}{3}$ $\frac{1}{\chi} - \frac{1}{1} + \frac{1}{1} +$		5	
			$3x[x-1](3x+1]=0$ $1x-1](3x+1]=0$ $x=1 + x = -\frac{1}{3}$ $when x=1, 3=3x1-1$ $(+x)-1](1+5)=-\frac{1}{3}=0$ $(+x)-1](1+5)=-\frac{1}{3}=0$ $(+x)-1](1+5)=-\frac{1}{3}=0$ $(+x)-1](1+5)=-\frac{1}{3}=0$	$3x[x-1](3x+1]=0$ $1x-1](3x+1]=0$ $x=1 + x = -\frac{1}{3}$ $when x=1, 3=3x1-1$ $(+x)-1](1+5)=-\frac{1}{3}=0$ $(+x)-1](1+5)=-\frac{1}{3}=0$ $(+x)-1](1+5)=-\frac{1}{3}=0$ $(+x)-1](1+5)=-\frac{1}{3}=0$	=> -12x2+3x+4-		

COMMENT MKS SOLUTION 12 8 JX - (1-X2 + 2) $\frac{1}{2} \int x \sqrt{1-x^2} \, dx = -\frac{1}{2x}$ $= \int x \sqrt{1-x^2} \, dx = \int x \sqrt{1-x^2} \, dx$ $= -\frac{1}{2}\int u^{\frac{1}{2}} du$ $= -\frac{1}{2}\int u^$ M $= \int fin u \cdot \cos u \, du$ LUE DE TOSU de - finu du = - de sinu = $\int \frac{du}{dt} = \int \frac{du}{dt}$ MI B HILE KARA


bownloaded tron www.mutoonline.com

8 SOLUTION MKS COMMENT $\frac{1}{1} \frac{1}{1} \frac{1}$ -=A+BX+C1. x2+1 $= 2 x^{2} + (x + 1) - A (x^{2} + 1) + (Bx + G(x + 1))$ PUt X=-1 => 1=2A => A=5 A M PUt X-1 = 3=2A+1B+GX2 ろニンガシャン(日生) 2=28+1 28=1 852 ħ $\frac{\chi^2 + \chi + 1}{\chi + 1} = \frac{1}{2 - \chi + 1}$ + XAI 21×+1 A $\frac{x^2 + x + 1}{1 + x + 1} = \frac{1}{1 + x} = \frac{1}{1 + x + 1} + \frac{1}{1 + x + 1}$ = 12[10[x+1]]+1[x+10] M = 1 いっ+1 [いいい) M = 12 lan2 + 1 x 11 $= \frac{1}{4} \left[\left(h + \frac{1}{4} h \right) + \frac{1}{2} \right] \\ = \frac{1}{4} \left[h + \frac{1}{4} h \right] \\ = \frac{1}{4} \left[h + \frac{1}{2} \right] \\ = \frac{1}{4} \left[h$ BJ Ø = ろいえナ要

1	8 W		ALC: NO. SHE
o.	SOLUTION	MKS	COMMENT
3.	$ \begin{array}{l} & \chi_{y_1} d_{y_1} = \chi^2 + y^2 \\ 2eb y = \sqrt{\chi} \\ \Rightarrow d_{y_1} = \sqrt{+\chi} d_{y_1} \\ \Rightarrow \chi = \sqrt{+\chi} d_{y_1} \\ \Rightarrow \chi = \sqrt{+\chi} d_{y_1} \\ \end{array} $	M	
	$= 3 \times 1 \times 1 \times 1 \times 1 \times 1 = x^{2} + v^{2} \times 2^{2}$ $= 3 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 = x^{2} (1 + v^{2})$ $= 3 \times 1 \times 1 \times 1 \times 1 \times 1 = 1 + v^{2}$ $\Rightarrow v + x + v = 1 + v^{2}$	-	
	$= \frac{1+1}{2} + $	B	for vide ted I trange ford
	$\int \sqrt{dN} = \int \sqrt{x} + C \sqrt{x}$ $\int \sqrt{2} \sqrt{2} = \sqrt{2} \sqrt{x} + C \sqrt{x}$ $\int \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$	m	
	$\frac{1}{2} \frac{1}{x^2} = \frac{1}{1} \frac{1}{x^2} + \frac{1}{2} \frac{1}{x^2}$ when $y = 2, x = 1$ $\frac{1}{2} \frac{1}{1} = \frac{1}{2} \frac{1}{1} + \frac{1}{2}$	BJ	Fubstitutus for V" Stutual Fain.
		An .	
	$z_{1}x_{2}^{2} = 2x^{2}(2nx+2)$	BJ	
			•

{] SOLUTION MKS COMMENT by dm =-Km Tt=3 dm =-Kab (dm = [-kdt M => Inm = -Kt+C ~ when t= 0, m= 10, = 2 c= 2 (n10 Harf life is 10 days =) when t=10 m= 1×10 = 5 graves when b=10 m= 89 ten i becomes 1n5 = -10/2 + 2010 10Kelnio-105 $\frac{101k}{k} = \frac{1}{10} \frac{2}{10} \frac{2}{10}$ $\frac{101k}{k} = \frac{1}{10} \frac{1}{10} \frac{2}{10}$ $\frac{101k}{k} = -\frac{1}{10} \frac{1}{10} \frac{1}{10} - -\Theta$ m -MI EUBSTINITY IN K whith mill, t=? ten @ bot comes EVISED Helmy m=1 1n1=- th2+ ln10 - M1 ±12=2010-101 10 + - - 10 10 10 + - 10/10 10 + - 10/10 E=10×2-3728 m t = 33.2 days

OV. SOLUTION MKS COMMENT & x2 ty2+ 14 M+C=0 Jubstitute For y => m2x2+x2+f[mx)+c for a line to be a langent b= uac $H(m^2+1)C = Imf$ $Hm^2c + 4c = mf^2$ $Hm^2c - m^2f^2 = -4c$ $m^2 [4c - f^2] = -4c$ $m^2 = -4c$ $Hc - f^2$ 81 $m = 4 \sqrt{-4c}{4c-f^2}$ $m = \pm \sqrt{\frac{4c}{F^2-4c}}$ A & 2y-X+ 5=0--D x2+y2-4x+3y-5=0--0 From () X = 24+5 => (2y+5)2+y2-4/2y+5)+3y-5=0 4y2+20y+25+y2-3y-20+3y-5=0 5y2+15y=0 mm and 2-1-5-51 Differentating 2+42-41×+33-5=0 > 2x+2y du - 4 + 3 dy = 0 m

lo. COMMENT MKS SOLUTION S र(45) 3 c[6,9] $\begin{array}{l} A(2,3) \\ AR = -\overline{VR} - \overline{VA} = \left[\frac{4}{5} \right] - \left[\frac{2}{3} \right] = \left[\frac{2}{2} \right] \\ BC = -\overline{VC} - \overline{VR} = \left[\frac{6}{5} \right] - \left[\frac{4}{5} \right] \\ \left[\frac{6}{5} \right] - \left[\frac{4}{5} \right] \\ \left[\frac{6}{3} \right] - \left[\frac{4}{5} \right] \\ \left[\frac{8}{3} \right] \\ \end{array}$ Three AB # ABC stherefore Whe points A, B and L are By Vtohter of a triangle. 31 Arta of triangle = 2/ARXBC) ABXBC = 2220 = 01-01+4K - M Arte, $A = \frac{1}{2}\chi\sqrt{4^2}$ $b = \frac{1}{2}\chi = \frac{1}{2}\chi = 2590\%$ A $\chi = \frac{1}{5}\chi = \frac{1}{2}\chi$ ~ = [3-x2-3x1)2-[5x2-1x1)2+[5x3=1x3]K M1 ~ - 3j - 11j +18K

·/n SOLUTION MKS COMMENT a. 6 = p. 1 m 15+11-36 =3x-114+182 -10 = 3x-11y+182 A => 3x -11y +18 2+10 = 0 ~ Normal vector v = 32-113+18K Ht & be divitional vector to the line => d = i+2j+3k x. d = 121121 500 $\binom{2}{-11}$, $\binom{2}{-13^{2}+-11^{2}+18^{2}}$, $\sqrt{1^{2}+2^{2}+3^{2}}$ fin $0 - M_{1}$ 3-22+54=1454.14 6.0 M 35=16,356 Find $F_{M} \Phi = \frac{35}{\sqrt{6356}}$ $0 = 6^{-1} \frac{35}{\sqrt{6356}}$ Q= 5.-1(0.439012) Q= 26.04° 而

No. No. $y = \sin\left(\frac{x}{1+x^2}\right)$ SOLUTION No-16 COMMENT MKS M $\frac{1+\chi^2}{\sqrt{1+\chi^2}} = \sqrt{\frac{1+\chi^2}{1+\chi^2}} - \frac{1}{\chi} \frac{\chi(\chi)}{1+\chi^2} - \frac{1}{\chi} \frac{\chi}{1+\chi^2} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} - \frac{1}{\chi} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} \frac{\chi}{1+\chi} - \frac{1}{\chi} - \frac{1}$ $T_{NS} y \frac{dy}{dx} = \left(\frac{1+\chi^2-\chi^2}{\sqrt{1+\chi^2}}, \frac{1}{1+\chi^2}\right)$ $T_{NS} y \frac{dy}{dx} = \left(\frac{1+\chi^2-\chi^2}{\sqrt{1+\chi^2}}, \frac{1}{1+\chi^2}\right)$ $T_{NS} y \frac{dy}{dx} = \frac{1}{(1+\chi^2)^{3/2}} - \frac{1}{\chi}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{1}{\chi^2}\right)$ $= \sqrt{1-f_{1}} \frac{\chi}{2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{1}{\chi^2}\right)$ $= \sqrt{1-f_{1}} \frac{\chi}{2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{1}{\chi^2}\right)$ $= \sqrt{1+\chi^2-\chi^2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{1}{\chi^2}\right)$ $= \sqrt{1+\chi^2-\chi^2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{1}{\chi^2}\right)$ $= \sqrt{1+\chi^2-\chi^2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{\chi}{1+\chi^2}\right)$ $= \sqrt{1+\chi^2-\chi^2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{\chi}{1+\chi^2}\right)$ $= \sqrt{1+\chi^2-\chi^2}$ $B_{1} \int \frac{f_{1}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{\chi}{1+\chi^2}\right)$ $= \sqrt{1+\chi^2}$ $B_{1} \int \frac{f_{2}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{\chi}{1+\chi^2}\right)$ $= \sqrt{1+\chi^2}$ $B_{1} \int \frac{f_{2}}{dx} \left(\frac{\chi}{1+\chi^2}, \frac{\chi}{1+\chi^2}\right)$ $= \sqrt{1+\chi^2}$ $= \sqrt{1+\chi^2}$ =- 1+x2 D B

bownloaded tron www.mutoonline.com

13 _ SOLUTION MKS COMMENT $P = f(x) = t^{2} f(x) = t^{2}$ T(x) = -ex Emx + ex COSX [by post will] = f'[o] = -e' fnot e' los o = L'F" (x) = - EGNX + e COSX + e COSX - e King = 2 ex rosx => E"loj = 2 eo cos = 2~ B1 F"(x) = 2 ex cosx - 2 ex 6mx => F" (o) = 2~ 87 ["[x]=2+ cosx-2+ 6mx-2+6mx $= -4e^{X} \cos X$ =). FIV (0] = . . . FUX) =- 4 2 5mx - 24 2 015 X B => ["10]= -4 · flxj= x + 2x2+2x3-4x5 $e^{X} = x + x^{2} + \frac{x^{3}}{3} - \frac{1}{3v} x^{5}$ B