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CHAPTER ONE 

GENERAL INTRODUCTION 

1.0 Introduction 

The contemporary discourse on climate change has underscored the critical need to 

understand the multifaceted contributors to carbon dioxide (CO2) emissions, which are 

pivotal drivers of global warming and environmental degradation (Nunes, 2023). Among the 

various anthropogenic activities, urbanization, industrialization, and deforestation stand out 

as significant factors influencing CO2 emissions (Raihan et al., 2022b). This study sought to 

investigate the impact of these determinants on CO2 emissions in Uganda, a country 

experiencing rapid urban growth, industrial expansion, and significant deforestation. By 

examining the interactions of CO2 emissions and its determinants in Uganda, the research 

aimed to contribute to the broader understanding of environmental sustainability in 

developing countries. This chapter provides a general introduction to the study and includes 

the background, statement of the problem, objectives of the study, the research hypothesis, 

and the conceptual framework. Also presented is the significance of the study and the 

justification for the study. Furthermore, it outlines the scope and limitations of the research, 

offering a clear understanding of the study's boundaries. The chapter concludes with a brief 

overview of the subsequent chapters, setting the stage for a comprehensive exploration of the 

research topic. 

1.2 Background to the Study 

Globally, CO2 emissions are a major contributor to the greenhouse effect, leading to global 

warming and climate change (Kweku et al., 2018). The Intergovernmental Panel on Climate 

Change (IPCC) reports that industrial activities account for approximately 21% of global 

CO2 emissions, while urbanization significantly contributes through increased energy 

consumption and transportation (IPCC, 2014). The relentless pursuit of economic growth has 

led to increased fossil fuel consumption and forest clearing, thereby escalating CO2 

emissions (Srivastav and Srivastav, 2015). Urbanization, which involves the expansion of 

cities and towns, results in higher energy demands for housing, transportation, and 

infrastructure, further driving up CO2 emissions (Tanveer et al., 2024). Additionally, 

deforestation exacerbates the problem by reducing the Earth's capacity to absorb CO2, as 

forests act as significant carbon sinks (FAO, 2020). According to the International Energy 

https://www.fao.org/interactive/forest-resources-assessment/2020/en/
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Agency (IEA), global CO2 emissions reached a record high of 36.3 billion metric tons in 

2021, reflecting the significant impact of these activities on the global carbon footprint (IEA, 

2022). The increase in CO2 emissions has severe implications for climate stability, with 

rising temperatures leading to extreme weather events, sea-level rise, and disruptions in 

ecological systems (Loucks, 2021). 

In Sub-Saharan Africa, the trends of urbanization and industrialization are particularly 

pronounced, with the region experiencing the highest urban growth rate globally at 4.1% 

annually (Calderon et al., 2019). This rapid urbanization, coupled with industrial expansion, 

contributes significantly to the region’s CO2 emissions (Akinsola et al., 2022). The expansion 

of urban areas leads to increased demand for energy, primarily derived from fossil fuels, and 

heightened transportation needs, both of which contribute to rising CO2 emissions. 

Moreover, Sub-Saharan Africa faces severe deforestation issues, losing approximately 3.9 

million hectares of forest annually due to agricultural expansion, logging, and infrastructure 

development (FAO, 2020). The conversion of forest land to agricultural and urban use not 

only reduces the number of trees available to absorb CO2 but also releases stored carbon 

from trees and soil into the atmosphere. This deforestation reduces the region's ability to 

sequester CO2, further compounding the environmental challenges (McNicol et al., 2018, 

Olorunfemi et al., 2022). The interplay of urbanization, industrialization, and deforestation in 

Sub-Saharan Africa has resulted in increasing CO2 emissions, posing significant threats to 

sustainable development and environmental health. The region's vulnerability to climate 

change impacts, such as droughts, floods, and food insecurity, underscores the need for 

integrated strategies to manage these drivers of CO2 emissions. 

Uganda exemplifies the environmental challenges associated with urbanization, 

industrialization, and deforestation in Sub-Saharan Africa. The country has seen its urban 

population grow from 12% in 2002 to 25% in 2020 (UBOS, 2020). This urban expansion has 

been accompanied by industrial growth, particularly in the manufacturing and energy sectors, 

leading to a rise in CO2 emissions (Appiah et al., 2019). The growth of industries, driven by 

the need to improve economic outcomes and reduce poverty, has resulted in increased fossil 

fuel combustion, contributing significantly to national CO2 emissions. Uganda’s 

deforestation rate is one of the highest globally, with an annual forest cover loss of 2.6%, 

driven by agricultural activities, charcoal production, and infrastructure development (World 

Bank, 2023). The reliance on wood fuel for energy and the expansion of agricultural land to 

feed a growing population have intensified deforestation. The combination of these factors 

file:///C:/Users/mercy/Downloads/IEA%20(2022),%20Global%20Energy%20Review:%20CO2%20Emissions%20in%202021,%20IEA,%20Paris%20https:/www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2,%20Licence:%20CC%20BY%204.0
file:///C:/Users/mercy/Downloads/IEA%20(2022),%20Global%20Energy%20Review:%20CO2%20Emissions%20in%202021,%20IEA,%20Paris%20https:/www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2,%20Licence:%20CC%20BY%204.0
https://www.fao.org/interactive/forest-resources-assessment/2020/en/
https://www.ubos.org/wp-content/uploads/publications/11_2020STATISTICAL__ABSTRACT_2020.pdf
file:///C:/Users/mercy/Downloads/World%20Bank.%20(2019).%20Africa's%20Pulse:%20An%20Analysis%20of%20Issues%20Shaping%20Africa's%20Economic%20Future.%20World%20Bank%20Group
file:///C:/Users/mercy/Downloads/World%20Bank.%20(2019).%20Africa's%20Pulse:%20An%20Analysis%20of%20Issues%20Shaping%20Africa's%20Economic%20Future.%20World%20Bank%20Group
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has led to a significant increase in CO2 emissions, with Uganda emitting approximately 6.1 

million metric tons of CO2 in 2019, a notable rise from previous years (World Bank, 2020). 

This situation underscores the urgent need to address the environmental impacts of these 

development activities to ensure sustainable growth. The rising CO2 emissions pose 

significant challenges to Uganda's efforts to achieve sustainable development goals, 

highlighting the need for effective policies to balance economic growth with environmental 

conservation. 

 

1.2 Statement of the problem 

 Uganda is experiencing a severe environmental crisis due to escalating CO2 emissions, 

significantly impacting public health and development goals (Waaswa and Satognon, 2020). 

The country's rapid urbanization, industrial expansion, and deforestation have led to a 

substantial rise in CO2 emissions, with approximately 6.1 million metric tons emitted in 2019 

(World Bank, 2020). This increase, driven by energy demand, industrial activities, and 

deforestation (Bamwesigye et al., 2020, Bamwesigye et al., 2022), contributes to global 

climate change and environmental degradation. 

While urbanization and industrialization are crucial for economic development, they pose 

significant environmental risks if not managed sustainably. Deforestation in Uganda, 

occurring at an annual rate of 2.6% (World Bank, 2023) , reduces the natural absorption of 

CO2, further elevating atmospheric CO2 levels and threatening biodiversity (Nunes, 2023) . 

The impact of increased CO2 emissions is profound, contributing to global warming (Hansen 

et al., 2023), altering weather patterns, and leading to more frequent climate-related events 

like droughts and floods (Valavanidis, 2022). These changes have direct implications for 

Uganda's agriculture, water resources, and socio-economic stability, exacerbating food 

insecurity, health risks, and economic disparities, particularly in rural areas (Otto et al., 

2017). 

There is a significant knowledge gap regarding the specific contributions of urbanization, 

industrialization, and deforestation to CO2 emissions in Uganda. This gap hinders the 

development of effective, evidence-based policies to mitigate CO2 emissions and promote 

sustainable development. This study sought to address these issues by investigating the 

impact of these determinants on CO2 emissions in Uganda, providing policymakers with 

file:///C:/Users/mercy/Downloads/World%20Bank.%20(2020).%20World%20Development%20Indicators%202020.%20World%20Bank%20Group
file:///C:/Users/Ibanda/Desktop/KAMUSIIME%20MAUREEN/World%20Bank.%20(2020).%20World%20Development%20Indicators%202020.%20World%20Bank%20Group
file:///C:/Users/Ibanda/Desktop/KAMUSIIME%20MAUREEN/World%20Bank.%20(2019).%20Africa's%20Pulse:%20An%20Analysis%20of%20Issues%20Shaping%20Africa's%20Economic%20Future.%20World%20Bank%20Group
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insights needed to develop targeted strategies that balance economic growth with 

environmental sustainability.  

1.3 Objectives of the Study 

1.3.1 Main Objective 

The main objective of this study was to examine the determinants of CO2 emissions in 

Uganda. 

1.3.2 Specific Objectives 

Specifically, the study sought to: 

1. To examine the effect of Urbanisation on CO2 emissions in Uganda. 

2. To assess the effect of industrialisation on CO2 emissions in Uganda. 

3. To analyse the effect of deforestation on CO2 emissions in Uganda. 

4. To analyse the effect of GDP per capita on CO2 emissions in Uganda. 

1.4   Hypotheses of the study 

The following hypotheses were proposed to guide thin investigation: 

1. There is no significant effect of Urbanisation on CO2 emissions in Uganda. 

2. There is no significant effect of industrialisation on CO2 emissions in Uganda. 

3. There is no significant effect of deforestation on CO2 emissions in Uganda. 

4. There is no significant effect of GDP per capita on CO2 emissions in Uganda. 

 

1.5 Conceptual Framework 

The conceptual framework in Fig. 1.1 delineates the relationships between the independent 

variables—urbanization, industrialization, and deforestation—and the dependent variable, 

CO2 emissions, within the context of Uganda. This framework is designed to illustrate how 

each independent variable is theorized to influence CO2 emissions, providing a structured 

approach to understanding the complex interactions contributing to environmental 

degradation. 
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Figure 1.1: The Conceptual Framework for the effect of urbanisation, industrialisation and 

deforestation on CO2 emissions in Uganda. 

Source: Adopted from Raihan et al. (2022b) 

Urbanization is conceptualized as the expansion of urban areas characterized by increased 

population density and infrastructure development (McGranahan and Satterthwaite, 2014). As 

urban areas grow, the demand for energy escalates due to heightened residential, commercial, 

and transportation activities. This increased energy consumption, primarily sourced from 

fossil fuels, leads to higher CO2 emissions. Urbanization also often results in the conversion 

of green spaces into built environments, reducing natural carbon sinks and further 

exacerbating emissions(Zhao et al., 2023). Therefore, in this study, urbanization is expected 

to significantly elevate CO2 emissions through increased energy use and reduced carbon 

absorption capacity. 

  INDEPENDENT VARIABLES DEPENDENT VARIABLE 

𝑯𝟏 

 

Urbanization (proxied by total urban 

population) 

  
 Industrialisation (Manufacturing Value 

Added) 
 

 

  

 

 

 

    CO2 Emissions 

 

 

GDP per capita 

 

𝑯𝟐 

 

H3 

Extraneous Variable: 

Government policy 

  
Annual Deforestation Rate (ADR) 
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Industrialization is defined as the growth of manufacturing and industrial activities within a 

country (Scholz, 2018). In Uganda, industrialization involves the expansion of factories, 

production facilities, and energy-intensive industries. These activities are major sources of 

CO2 emissions due to the burning of fossil fuels for energy and the release of greenhouse 

gases during industrial processes. The development of industrial zones often necessitates 

substantial energy inputs, contributing to higher emissions. Consequently, industrialization is 

anticipated to have a direct and substantial impact on CO2 emissions, reflecting the energy 

demands and emissions associated with industrial activities. 

Deforestation refers to the large-scale clearing of forests for agricultural expansion, logging, 

and infrastructure development (Kumar et al., 2022). Forests act as significant carbon sinks, 

absorbing CO2 from the atmosphere (Chen et al., 2021). When forests are cleared, not only is 

this absorption capacity lost, but the carbon stored in trees is also released back into the 

atmosphere, increasing CO2 levels. In Uganda, deforestation is driven by the need for 

agricultural land, charcoal production, and infrastructural projects (Twongyirwe et al., 2018). 

The loss of forest cover leads to a reduction in carbon sequestration and an increase in CO2 

emissions. Therefore, deforestation is expected to have a marked negative effect on CO2 

levels, exacerbating environmental degradation and contributing to climate change. 

GDP per capita 

The conceptual framework in figure 1.1 posits an Environmental Kuznets Curve (EKC) 

relationship between GDP per capita and CO2 emissions. Initially, as GDP per capita 

increases, CO2 emissions are expected to rise due to heightened industrial activity, energy 

consumption, and urbanization, driven by reliance on fossil fuels and expanding 

infrastructure. However, beyond a certain income threshold, further GDP per capita growth is 

hypothesized to reduce CO2 emissions due to technological advancements, stricter 

environmental regulations, and increased investment in sustainable practices. Thus, the a 

priori expectation was that CO2 emissions initially increase with GDP per capita but 

eventually decline as the economy matures and adopts more sustainable practices. 

Extraneous Variables: The framework also recognized the influence of extraneous variables 

such as energy consumption patterns and GDP per capita. These factors can indirectly affect 

CO2 emissions by influencing the scale and efficiency of energy use and economic activities. 

For instance, higher GDP per capita can lead to increased consumption and industrial 

activities, thereby elevating CO2 emissions. Similarly, energy consumption patterns, 
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including the types of energy sources used, play a crucial role in determining the level of 

emissions. 

The conceptual framework of this study posits that urbanization, industrialization, and 

deforestation are key drivers of CO2 emissions in Uganda. Each of these independent 

variables contributes to increased emissions through specific mechanisms: urbanization 

through increased energy demand and reduced green spaces, industrialization through energy-

intensive production processes, and deforestation through the loss of carbon sinks and release 

of stored carbon. Understanding these relationships was essential for developing targeted 

strategies to mitigate CO2 emissions and promote sustainable development in Uganda. The 

study aimrd to elucidate these dynamics comprehensively, providing a basis for informed 

policy-making and environmental management. 

1.6 Significance of the study 

This study holds significant importance for the academic community by advancing the 

understanding of the intricate relationships between urbanization, industrialization, 

deforestation, and CO2 emissions in the context of a developing country like Uganda. It 

addresses a notable gap in the literature by providing empirical evidence on how these factors 

specifically contribute to environmental degradation in a rapidly developing economy. While 

much of the existing research has focused on developed nations, this study offers valuable 

insights into the dynamics at play in a Sub-Saharan context, specifically Uganda, thereby 

broadening the scope of environmental and development economics. 

The research contributes to the theoretical framework of environmental economics by 

integrating concepts of sustainable development and ecological impact within the study of 

economic growth. By examining the distinct and combined effects of urbanization, 

industrialization, and deforestation, the study enriches the academic discourse on how 

economic development strategies can be aligned with environmental sustainability goals. 

This comprehensive approach helps fill a critical void in the literature, where there is a need 

for more nuanced analyses that account for the multifaceted nature of development activities 

and their environmental repercussions. 

Moreover, the findings of this study will serve as a foundational reference for future 

academic research. The empirical data and methodological approaches employed can be 

utilized and built upon by other scholars aiming to explore similar issues in different 

geographical regions or contexts. This study's insights into the policy implications of its 
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findings can also stimulate scholarly debate and inspire new research directions aimed at 

formulating innovative solutions to the challenges of balancing economic growth with 

environmental conservation. 

Understanding how urbanization, industrialization, and deforestation each contribute to CO2 

emissions is key for Uganda's sustainable growth. Urbanization and industrialization are 

essential for economic progress and better living standards, but they come with 

environmental costs, particularly increased CO2 emissions. By pinpointing how these 

activities drive emissions, this study can help policymakers strike a balance between 

economic development and environmental sustainability. 

The insights from this research have significant policy implications. They can guide the 

creation of targeted strategies to reduce CO2 emissions in Uganda. For example, recognizing 

that urbanization increases emissions through higher energy use can lead to adopting energy-

efficient technologies and sustainable city planning. Similarly, understanding the impact of 

industrialization on emissions can result in stricter environmental regulations and promoting 

cleaner production methods. Addressing the role of deforestation in emissions can inspire 

more effective forest management and conservation policies. 

This study is also significant because it highlights the urgent need for integrated and 

sustainable development policies that consider both economic growth and environmental 

conservation. By examining the interplay between urbanization, industrialization, and 

deforestation, the research underscores the importance of a holistic approach to development 

planning that can mitigate CO2 emissions while promoting economic prosperity. 

The timing of this research is critical, given the global and local urgency of combating 

climate change. Uganda's rising CO2 emissions contribute to global warming and local 

environmental degradation, which have severe effects on agriculture, health, and socio-

economic stability. The findings will add to the global conversation on climate change, 

offering practical recommendations that could be useful not only in Uganda but also in other 

developing countries facing similar issues. 

1.7 Scope of the study 

1.7.1 Content Scope 

The scope of this study encompassed an in-depth analysis of the impact of urbanization, 

industrialization, and deforestation on CO2 emissions in Uganda. The research aimed to 
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dissect and understand the individual and combined effects of these three critical drivers on 

the country's CO2 emissions. By examining urban growth patterns, industrial activities, and 

deforestation rates, the study provides a comprehensive overview of how these factors 

contribute to environmental degradation. Additionally, the study explored the socio-economic 

implications of increased CO2 emissions and offer policy recommendations to mitigate these 

impacts while fostering sustainable development. 

1.7.2 Time Scope 

The temporal scope of this study spanned from 1990 to 2022, covering over three decades of 

data on urbanization, industrialization, deforestation, and CO2 emissions in Uganda. This 

extensive timeframe allowed for a thorough examination of historical trends and patterns, 

enabling the identification of long-term impacts and changes over time. The study utilized 

time-series data to analyse the progression and correlation between the independent variables 

(urbanization, industrialization, and deforestation) and the dependent variable (CO2 

emissions). By covering a substantial period, the research aimed to provide robust insights 

into how these factors have evolved and influenced CO2 emissions over time, offering a solid 

foundation for future policy interventions and sustainable development strategies. 

1.7.3 Geographical Scope 

The geographical scope of this study was limited to Uganda, a Sub-Saharan African country 

situated between latitudes 1°S and 4°N, and longitudes 29°E and 35°E. Uganda is bordered 

by Kenya to the east, South Sudan to the north, the Democratic Republic of the Congo to the 

west, Rwanda to the southwest, and Tanzania to the south. The country experiences rapid 

development and significant environmental challenges, making it a pertinent case study. 

Uganda's pronounced urbanization, burgeoning industrial sector, and high deforestation rates 

necessitate a detailed examination. The research focused on a macro-level indicator, utilizing 

macro data on Uganda’s urbanization, industrialization, deforestation rates, and carbon 

dioxide emissions over the sample period. This approach provided a comprehensive 

understanding of the temporal variations in CO2 emissions and the underlying factors driving 

these emissions on a national scale. 

1.7.4 Methodological Scope 

This study utilized time series data spanning from 1995 to 2022 to investigate the effect of 

urbanisation, industrialisation and deforestation on CO2 emissions in Uganda. The 

methodological approach encompassed the collection and analysis of historical data to 
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identify trends, patterns, and potential causal relationships between economic activities, 

energy consumption, industrial expansion, deforestation, and CO2 emissions. Advanced 

econometric techniques, including unit root tests, cointegration analysis, and error correction 

modelling, was utilized to ensure the robustness and reliability of the findings. This 

comprehensive temporal analysis was meant to provide insights into the dynamics of CO2 

emissions and inform policy recommendations for sustainable environmental management 

and economic development in Uganda. 

1.8 Justification of the Study 

The urgency of addressing climate change and environmental degradation necessitated a 

comprehensive understanding of the factors contributing to CO2 emissions. This study was 

justified on several grounds, particularly in the context of Uganda, a developing country 

experiencing rapid urbanization, industrialization, and deforestation. 

Firstly, Uganda's rapid urbanization and industrialization are crucial for its economic 

development and improvement of living standards. However, these processes are 

accompanied by significant environmental costs, primarily through increased CO2 emissions. 

The current pace of urban growth and industrial expansion necessitates an empirical analysis 

to identify the specific contributions of these activities to CO2 emissions. Understanding 

these contributions is essential for developing targeted strategies that can balance economic 

growth with environmental sustainability. 

Secondly, Uganda's high deforestation rate poses a severe threat to its environmental health 

and carbon sequestration capacity. Forests play a critical role in absorbing CO2, and their 

destruction leads to increased atmospheric CO2 levels. Given Uganda's annual forest cover 

loss, it is imperative to quantify the impact of deforestation on CO2 emissions accurately. 

This study aimed to fill this gap by providing detailed insights into how deforestation 

exacerbates CO2 emissions, thereby informing more effective forest management and 

conservation policies. 

Additionally, the global discourse on climate change often overlooks the specific challenges 

faced by developing countries. This study contributes to a more nuanced understanding of 

these challenges by focusing on Uganda. By examining the interplay between urbanization, 

industrialization, and deforestation in a developing country context, the research highlights 

the unique environmental dynamics at play. This perspective is crucial for formulating 

policies that are not only effective but also contextually relevant for developing nations. 
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Furthermore, the study's temporal scope, spanning three decades, allows for a thorough 

examination of historical trends and long-term impacts. This extensive timeframe provides a 

robust foundation for understanding how the relationships between urbanization, 

industrialization, deforestation, and CO2 emissions have evolved over time. Such a historical 

perspective is vital for predicting future trends and crafting long-term strategies to mitigate 

environmental degradation. 

The findings of this study were expected to have significant policy implications. By 

elucidating the specific impacts of urbanization, industrialization, and deforestation on CO2 

emissions, the research provides policymakers with the evidence needed to develop targeted 

interventions. These interventions can help mitigate CO2 emissions while promoting 

sustainable economic growth. For instance, insights from the study could lead to the adoption 

of energy-efficient technologies, sustainable urban planning practices, stricter environmental 

regulations for industries, and more effective forest conservation measures. 

Lastly, the study addresses a critical knowledge gap in the literature. While the general 

relationship between economic activities and CO2 emissions is well-documented, there is a 

lack of detailed empirical research focusing on Uganda. This study aimed to bridge this gap, 

offering valuable contributions to the academic discourse on environmental economics and 

sustainable development. 

1.9 Definition of Major Terms Used in the Study 

Urbanization 

Urbanization refers to the process by which an increasing proportion of a population migrates 

from rural to urban areas, leading to the growth and expansion of cities (McGranahan and 

Satterthwaite, 2014). This phenomenon is typically characterized by the development of 

infrastructure, increased industrial and commercial activities, and changes in lifestyle. In the 

context of this study, urbanization is examined as a driver of CO2 emissions due to the 

heightened energy consumption and transportation needs associated with expanding urban 

centres. 

Industrialization 

Industrialization is defined as the transformation of an economy from primarily agrarian and 

manual labor-based to one dominated by industry and machine manufacturing(Scholz, 2018) 

. This process involves the development and expansion of factories, production facilities, and 
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energy-intensive industrial activities. Industrialization is a significant factor in CO2 

emissions as it often relies on the combustion of fossil fuels for energy, leading to the release 

of greenhouse gases. 

Deforestation 

Deforestation refers to the large-scale removal or clearing of forests, typically to make way 

for agricultural activities, logging, or infrastructure development (Kumar et al., 2022). This 

process results in the loss of trees that act as carbon sinks, thereby reducing the Earth's 

capacity to absorb CO2 from the atmosphere. Deforestation contributes to increased CO2 

emissions and is a critical environmental issue examined in this study. 

 

CO2 Emissions 

CO2 emissions denote the release of carbon dioxide into the atmosphere, primarily from the 

burning of fossil fuels, deforestation, and various industrial processes (Hung and Skerl, 

2020). CO2 is a major greenhouse gas that contributes to the greenhouse effect, leading to 

global warming and climate change. This study focuses on CO2 emissions as the primary 

measure of environmental impact resulting from urbanization, industrialization, and 

deforestation. 

Carbon Sequestration 

Carbon sequestration is the process by which CO2 is absorbed and stored in natural reservoirs 

such as forests, soil, and oceans (Hultman, 2020). This process helps to mitigate the effects of 

greenhouse gas emissions by reducing the amount of CO2 in the atmosphere. In the context 

of this study, deforestation's impact on carbon sequestration is a critical factor in 

understanding changes in CO2 emissions. 

Greenhouse Gases (GHGs) 

Greenhouse gases are atmospheric gases that trap heat from the sun, thereby warming the 

Earth's surface (Kweku et al., 2018). The primary GHGs include carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), and fluorinated gases. This study focuses on CO2 as a 

key greenhouse gas emitted from urbanization, industrialization, and deforestation activities 

in Uganda. 

Sustainable Development 
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Sustainable development refers to the organized efforts to meet the needs of the present 

without compromising the ability of future generations to meet their own needs (Tomislav, 

2018, Grunkemeyer and Moss, 2020). This concept integrates economic growth, 

environmental protection, and social equity. In this study, sustainable development is the 

overarching goal, seeking to balance economic activities with the preservation of 

environmental quality. 

Fossil Fuels 

Fossil fuels are natural energy sources formed from the remains of ancient plants and 

animals, including coal, oil, and natural gas (Bobrowsky, 2019, Stephanie, 2022). These fuels 

are burned to produce energy, resulting in the emission of CO2 and other greenhouse gases. 

The study examines the role of fossil fuel consumption in urbanization and industrialization 

processes contributing to CO2 emissions in Uganda. 

Ecological Footprint 

The ecological footprint measures the environmental impact of human activities in terms of 

the amount of natural resources consumed and the waste produced (Bastianoni et al., 2020). It 

is a quantitative assessment of the demand placed on the Earth's ecosystems. This study 

utilizes the concept of the ecological footprint to evaluate the environmental consequences of 

urbanization, industrialization, and deforestation. 

Environmental Degradation 

Environmental degradation refers to the deterioration of the environment through the 

depletion of natural resources, destruction of ecosystems, and pollution (Singh et al., 2022). 

This process results from human activities such as deforestation, industrial emissions, and 

urban expansion. The study investigates how these activities contribute to environmental 

degradation, particularly through increased CO2 emissions. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 2.0 Introduction 

The interplay between urbanization, industrialization, and deforestation significantly impacts 

CO2 emissions, a major driver of climate change. This chapter reviews the theoretical and 

empirical literature surrounding these relationships, with a focus on Uganda from 1990 to 

2023. By exploring both global and regional studies, the aimed is to provide a comprehensive 

understanding of how these factors contribute to CO2 emissions, identify existing research 

gaps, and suggest areas for further investigation. The structure of this chapter is structured to 

include a theoretical review that outlines key concepts and theories, an empirical review of 

studies examining the effects of urbanization, industrialization, and deforestation on CO2 

emissions, and a discussion on the research gap. 

2.1 Theoretical Review 

The following theoretical frameworks help elucidate the underlying mechanisms and 

interactions influencing CO2 emissions. This review explores key theoretical perspectives 

relevant to understanding CO2 emissions, focusing on the Environmental Kuznets Curve 

(EKC) hypothesis, the theory of economic growth and environmental degradation, and 

structural transformation theory. These theories provide a foundational understanding of how 

economic development, industrialization, urbanization, and land-use changes impact CO2 

emissions. 

2.1.1 Environmental Kuznets Curve (EKC) Hypothesis 

The Environmental Kuznets Curve (EKC) hypothesis, first proposed by Grossman and 

Krueger (1991), suggests an inverted U-shaped relationship between economic development 

and environmental degradation. Initially, as an economy grows, environmental degradation, 

including CO2 emissions, tends to increase due to industrialization and increased 

consumption. However, after reaching a certain level of income, the trend reverses, and 

environmental quality improves as the economy matures. This improvement is attributed to 
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increased investments in cleaner technologies, higher environmental awareness, and stricter 

regulations (Grossman and Krueger, 1991, Panayotou, 1993, Stern, 2004). 

2.1.2 Theory of Economic Growth and Environmental Degradation 

The theory of economic growth and environmental degradation, articulated by Meadows et 

al. (1972), posits that economic development often leads to environmental harm, particularly 

in the early stages of industrialization. Environmental degradation, characterized by 

pollution, deforestation, and loss of biodiversity, often accompanies rapid economic 

expansion. According to Meadows et al. (1972), the limits to growth paradigm suggests that 

unchecked economic growth can lead to severe environmental consequences, potentially 

undermining long-term sustainability. This perspective highlights the need for integrating 

environmental considerations into economic planning to achieve sustainable development 

(Ruggerio, 2021). This theory emphasizes that as economies grow, increased energy 

consumption and industrial activities result in higher CO2 emissions. Factors such as urban 

expansion, industrial production, and transportation contribute significantly to environmental 

degradation. This perspective highlights the challenge of achieving sustainable development, 

where economic growth is pursued without exacerbating environmental damage.  

2.1.3 Structural Transformation Theory 

Structural transformation theory, proposed by Syrquin (1975), focuses on the transition from 

agriculture-based economies to industrial and service-oriented economies. This 

transformation often involves significant changes in land use, energy consumption, and 

industrial activity, all of which can affect CO2 emissions. As countries industrialize and 

urbanize, deforestation for agricultural expansion and urban development can lead to 

increased emissions. 

2.1.4 Theory of Sustainable Development 

The concept of sustainable development, as defined by the Brundtland Commission (1987), 

advocates for meeting present needs without compromising the ability of future generations 

to meet their own needs. This framework emphasizes the interconnectedness of economic, 

social, and environmental dimensions of development. It underscores the importance of 

adopting policies that promote economic growth while ensuring environmental sustainability 

and social equity. 

2.1.5 Triangulation of Theories 
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The interplay between economic growth and environmental degradation in Uganda, 

particularly in terms of CO2 emissions, can be effectively understood through a triangulation 

of three prominent theories: the Environmental Kuznets Curve (EKC) hypothesis, the 

Economic Growth and Environmental Degradation theory, and the Structural Transformation 

theory. 

The Environmental Kuznets Curve (EKC) hypothesis posits that there is an inverted U-

shaped relationship between economic growth and environmental degradation. Initially, as a 

country's economy grows, environmental degradation tends to increase due to urbanization 

and industrialization. However, past a certain income threshold, further growth can lead to 

improvements in environmental quality, primarily driven by the adoption of cleaner 

technologies and stringent environmental regulations. For Uganda, a developing nation, this 

suggests that CO2 emissions may rise during the earlier stages of growth as fossil fuels and 

land use changes, such as deforestation, dominate the economic landscape. However, as 

Uganda's income levels rise, a transition to more sustainable practices should theoretically 

occur, leading to a decline in emissions. Nevertheless, the applicability of the EKC in 

developing countries like Uganda is contentious, with studies indicating that the positive 

turning point may take longer to achieve or could be impossible without strong governmental 

policies (Stern, 2018, Stern, 2014). 

Complementing the EKC, the Economic Growth and Environmental Degradation theory 

emphasizes that economic progress often correlates with environmental harm, particularly 

during the early stages of industrial growth. For Uganda, rapid economic expansion has 

historically led to increased CO2 emissions, largely fuelled by reliance on fossil fuels and 

deforestation driven by agricultural expansion and industrial development. This theory 

highlights that while economic growth can initiate detrimental environmental changes, the 

severity of this impact is not fixed and can be mitigated through technological advancements 

and the implementation of regulatory frameworks. The implications for Uganda underscore 

the urgent need for integrating sustainable practices into economic planning, thereby 

advocating for cleaner energy sources, improved energy efficiency, and waste management as 

critical strategies to curb CO2 emissions (Habiba et al., 2022). 

Furthermore, the Structural Transformation theory sheds light on the evolution from 

agriculture-based economies to industrial and service-oriented ones, which often leads to 

increased industrial activity and deforestation, thereby heightening CO2 emissions. Uganda's 
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shift from a primarily agrarian economy to an industrial and urbanized economy illustrates 

this transformation’s environmental consequences. The conversion of forested land into 

industrial and urban areas not only releases stored carbon but also diminishes the carbon sink 

function of existing forests. This underscores the critical need for policies that advocate for 

sustainable land use practices and alternative energy solutions, aiming to balance economic 

development with environmental stewardship. 

The triangulation of these theories provides valuable insights into the complex relationship 

between Uganda's economic growth, urbanization, and CO2 emissions. As Uganda continues 

its economic transition, it becomes imperative to prioritize sustainable development strategies 

that reconcile economic advancement with environmental preservation. This involves 

fostering policies that promote green technologies and responsible land-use practices to 

mitigate the adverse environmental impacts of structural transformation and economic 

progress. 

 

2.2 Empirical Review 

Empirical studies provide concrete evidence on the relationships between urbanization, 

industrialization, deforestation, and CO2 emissions. This section reviews relevant studies, 

with a particular focus on findings from Uganda and other comparable contexts. 

2.2.1 Review of Empirical Studies on the Effect of Urbanization (Urban population) on 

CO2 Emissions 

Urbanization, a global phenomenon characterized by the migration of populations from rural 

to urban areas, has significant implications for environmental sustainability. One critical area 

of concern is the impact of urbanization on carbon dioxide (CO2) emissions, a primary 

greenhouse gas contributing to climate change. This literature review examines empirical 

studies conducted between 2015 and 2024, focusing on the relationship between urbanization 

and CO2 emissions. The review aims to synthesize key findings, identify patterns, and 

provide insights into the complexities of urban development and environmental impact. 

Several studies have established a direct correlation between urbanization and increased CO2 

emissions. For instance, Wang et al. (2014) found that urban expansion in China led to a 

significant rise in CO2 emissions due to increased energy consumption and transportation 

needs. Similarly, Fragkias et al. (2017) highlighted that urbanization in developing countries 
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tends to accelerate emissions growth because of the rapid industrialization and urban 

infrastructure development. 

Contrastingly, some research indicates that the relationship between urbanization and CO2 

emissions can be non-linear or context-dependent. Research by Liu and Bae (2018) suggests 

that while urbanization initially increases CO2 emissions, it may eventually lead to emission 

reductions as cities develop more efficient public transportation systems and implement 

stricter environmental regulations. This inverted U-shaped relationship, often referred to as 

the Environmental Kuznets Curve, posits that emissions rise during early stages of 

urbanization but decline as urban areas mature and adopt sustainable practices. 

The role of technological innovation and policy interventions in mitigating CO2 emissions in 

urban areas has also been a focal point of recent studies. For example, Xu and Lin (2015) 

demonstrated that cities investing in green technologies and renewable energy sources can 

significantly curb their CO2 emissions despite ongoing urbanization. Moreover, their study 

underscores the importance of government policies that promote energy efficiency and 

sustainable urban planning. 

Urban form and structure are crucial factors influencing CO2 emissions, as explored in 

multiple empirical studies. According to Zheng et al. (2023), compact urban forms, 

characterized by high-density development and mixed land uses, tend to be more energy-

efficient and produce lower per capita CO2 emissions compared to sprawling urban forms. 

This finding suggests that thoughtful urban design and land-use planning are essential for 

reducing the carbon footprint of cities. 

Recent studies have explored the impact of urbanization on CO2 emissions from a regional 

perspective, revealing significant geographical variations in these effects. Research by Li and 

Lin (2015) demonstrated that, in low-income regions, urbanization reduces energy 

consumption but leads to increased CO2 emissions. Conversely, in middle-/low-income and 

high-income regions, industrialization decreases energy consumption but raises CO2 

emissions, while urbanization substantially boosts both energy consumption and CO2 

emissions. For middle-/high-income regions, urbanization does not markedly affect energy 

consumption but does limit the growth of emissions, whereas industrialization shows minimal 

impact on both energy consumption and CO2 emissions. Additionally, from a population 

perspective, urbanization generally enhances energy consumption and raises emissions, with 

the exception of high-income areas. 
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In addition to direct emissions, the literature also highlights the role of urbanization in 

influencing indirect CO2 emissions through changes in consumption patterns and lifestyle. 

Xu et al. (2024) found that urban residents typically have higher consumption levels and 

carbon-intensive lifestyles than their rural counterparts, contributing to higher overall 

emissions. Their study emphasizes the need for promoting sustainable consumption practices 

alongside urban development. 

Urbanization is a significant factor in the increase of CO2 emissions, as it often leads to 

higher energy consumption, increased transportation needs, and greater waste production. 

Several studies have examined this relationship, providing valuable insights into how urban 

growth impacts environmental outcomes. For instance, Lin et al. (2017) conducted a 

comprehensive study across multiple developing countries, finding a positive correlation 

between urbanization and CO2 emissions. Their research highlighted the role of increased 

energy demand and transportation needs as primary contributors to this trend. 

A study by Salahuddin et al. (2019) employing second-generation panel regression techniques 

to estimate the impacts that urbanization and globalization have on CO2 emissions for a panel 

of 44 Sub-Saharan Africa (SSA) countries for the period 1984–2016. The estimated 

coefficient of urbanization was found to positive, statistically significant, and highly 

consistent across different estimation techniques. Additionally, a causality test performed 

revealed that urbanization caused emissions. 

2.2.2 Review of empirical studies on the effect of industrialisation on CO2 emissions 

Industrialization, a driving force of economic development, has been closely linked to 

increased carbon dioxide (CO2) emissions globally. This review examines empirical studies 

conducted between 2015 and 2024, focusing on the impact of industrialization on CO2 

emissions in various regions, including the OECD, ASEAN, Sub-Saharan Africa, East Africa, 

and Uganda. The review synthesizes key findings, highlights regional disparities, and 

discusses the implications of industrial growth on environmental sustainability. 

In the OECD countries, extensive research has highlighted the significant impact of 

industrialization on CO2 emissions. A study by Wang et al. (2015) on the presence of an 

urbanization-carbon emissions Environmental Kuznets Curve for a panel of the Organization 

for Economic Co-operation and Development (OECD) countries from 1960 to 2010 using a 

semi-parametric panel fixed effects regression model found that while industrial activities are 

a primary source of CO2 emissions, technological advancements and stringent environmental 
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regulations have mitigated some of these effects. They strong evidence for an inverse U-

shaped curve relationship between urbanization and carbon emissions, verifying 

the Environmental Kuznets Curve hypothesis Similarly, Wang et al. (2021) demonstrated that 

OECD countries have experienced a decoupling of industrial growth and CO2 emissions, 

attributed to improved energy efficiency and a shift towards service-based economies. 

However, despite these advancements, the overall emissions from industrial sectors remain 

substantial. 

In the ASEAN region, the rapid pace of energy intensive industrialization has been associated 

with a marked increase in CO2 emissions (Zafar et al., 2020). According to Hariani et al. 

(2022)industrial activities in ASEAN countries have led to significant environmental 

challenges, primarily due to the reliance on fossil fuels and the lack of stringent emission 

control policies. A study by Roespinoedji et al. (2020) corroborates these findings, 

highlighting that industrialization in ASEAN is a major contributor to regional CO2 

emissions, with energy-intensive industries being particularly problematic. This underscores 

the need for comprehensive policy frameworks to address the environmental impacts of 

industrial growth in this region. 

Sub-Saharan Africa presents a contrasting scenario where industrialization is still in its 

nascent stages, yet its impact on CO2 emissions is becoming increasingly evident. Research 

by (Salahuddin et al., 2019) indicated that while industrialization is crucial for economic 

development, it has led to a steady rise in CO2 emissions in several Sub-Saharan African 

countries. Furthermore, Bekhet and Othman (2017) highlighted that the lack of modern 

technologies and dependence on outdated industrial processes exacerbate the environmental 

impact. On the other hand, different findings have been reported by Afriyie et al. (2023) in 

study using panel data from 37 sub-Saharan countries between 1995 and 2017 employed 

panel cointegration tests and pooled mean group ARDL (PMG-ARDL) techniques, along 

with the Dumitrescu-Hurlin causality test, to empirically examine the impact of urbanization, 

economic growth, energy consumption, and industrialization on carbon emissions. Notably, 

the findings revealed a significantly negative relationship between industrialization and 

carbon emissions. This indicates that as industrialization progresses in sub-Saharan Africa, 

carbon emissions do not necessarily increase, and may even decrease, highlighting the 

potential for sustainable industrial practices. Lin et al. (2015) similarly found that industrial 

value-added has an inverse and significant relationship with CO2 emissions, which suggests 

that there is no evidence that industrialisation increases carbon emissions in Nigeria. 
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East Africa, a sub-region of Sub-Saharan Africa, has also seen similar trends. A study by 

Nyambura et al. (2018) found that industrialization in East Africa has resulted in increased 

CO2 emissions, primarily due to the expansion of manufacturing and energy sectors. A 

related study by, Sun et al. (2022) found that industrialization led to a reduction in 

environmental quality in the region through high CO2 emissions.This is further supported by 

research from Yu et al. (2024), which emphasizes the significant role of industrial activities in 

driving CO2 emissions in East African countries. All the studies highlight the urgent need for 

policies promoting energy efficiency and sustainable industrial practices to curb emissions. 

Uganda, specifically, has experienced notable industrial growth in recent years, with 

corresponding environmental impacts. Appiah et al. (2019) conducted a study on the causal 

relationship between industrialization, energy intensity, economic growth, and carbon dioxide 

emissions in Uganda for the period from 1990 to 2014. Utilizing the autoregressive 

distributed lag (ARDL) method, they found that in the long run, a 1% increase in economic 

growth and industrialization resulted in a 31.1% and 3.2% increase in carbon emissions, 

respectively. Conversely, a 1% increase in energy intensity led to an 83.9% decrease in 

emissions. Additionally, the ARDL results indicated that the combined effect of energy 

intensity, economic progress, and industrialization, when held constant, resulted in a 2.46% 

reduction in emissions in Uganda. Moreover, Okillong and Luwedde (2023) investigated the 

effects of industrialization on carbon emissions in Uganda. Their findings, based on the 

ARDL model, revealed that industrialization has a positive and significant effect on CO2 

emissions in the long run. Specifically, a one-unit increase in industrialization resulted in a 

0.007632 unit increase in CO2 emissions at a 5 percent significance level. In the short run, 

industrialization also had a significantly positive effect on CO2 emissions, with a one-unit 

increase in industrialization leading to a 0.001026 unit increase in emissions at a 5 percent 

significance level. Furthermore, the NARDL model provided additional insights, showing 

that positive variations in industrialization significantly increased CO2 emissions both in the 

short run and long run. Conversely, negative variations in industrialization significantly 

reduced CO2 emissions in both time frames.  

2.2.3 Review of Empirical Studies on the Effect of Deforestation on CO2 Emissions 

The effect of deforestation on CO2 emissions has been extensively studied across various 

regions, including OECD, ASEAN, Sub-Saharan Africa (SSA), East Asia (EA), and Uganda.  
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Kocoglu et al. (2024) examined the potential of forests to contribute to carbon neutrality. 

Their research, spanning from 1990 to 2022, analysed data from a global sample of 181 

countries to explore the relationship between forest extent and per capita CO2 emissions. 

They focused on the non-linear effects of economic growth, energy efficiency, and 

urbanization. By employing dynamic panel threshold and dynamic panel quantile threshold 

methods, the researchers found that forest extents could serve as a viable alternative to 

renewable energy and energy efficiency in reducing CO2 emissions. The findings indicated 

that expanding forest areas significantly impacted mitigating CO2 emissions, thus supporting 

global environmental improvement efforts. 

Raihan et al. (2022a) examined the dynamic impacts of energy use, agricultural land 

expansion, and deforestation on CO2 emissions in Malaysia, employing a Vector 

Autoregression (VAR) model. Their findings indicate that deforestation significantly 

contributes to increased CO2 emissions, emphasizing the urgent need for sustainable land 

management practices in ASEAN countries. Additionally, a study by Begum et al. (2020) 

investigated the relationship and dynamic impacts of economic growth and forested area on 

carbon dioxide (CO2) emissions in Malaysia, covering the period from 1990 to 2016. The 

researchers utilized the dynamic ordinary least squared (DOLS) approach to analyze the time 

series data. Focusing on the effect of deforestation, the study found that the long-run 

coefficient of forested area is negative and significant. Specifically, the results indicate that a 

reduction of one hectare of forested area leads to an increase of three kilotons of CO2 

emissions in Malaysia. This finding underscores the significant adverse impact of 

deforestation on CO2 emissions, emphasizing the critical need for policy measures aimed at 

forest conservation, sustainable management, and reforestation to mitigate carbon emissions 

and support long-term economic growth in Malaysia. 

In East Asia, Mighri et al. (2022) examined the impact of urbanization and forest investment 

on CO2 emissions in China. Employing spatial econometric techniques, the study 

demonstrated that proper forest management and investments in forest expansion could 

mitigate CO2 emissions. The findings suggest that while urbanization contributes to 

deforestation, strategic forest investments can play a pivotal role in carbon abatement. 

In the context of OECD countries, Selvanathan et al. (2023) examined the relationship 

between forestation and CO2 emissions within the context of the Environmental Kuznets 

Curve (EKC) hypothesis. Their study analysed data from 24 OECD countries over the period 
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from 1990 to 2018. The researchers employed individual-country analysis and panel dynamic 

analysis to estimate the augmented EKC framework, incorporating the effects of agriculture, 

forestation, and energy consumption on CO2 emissions. They found that the impact of forest 

cover on CO2 emissions was mixed at the single-country level. However, the panel fixed-

effect results indicated that a 1% increase in forest cover was associated with a 0.63% 

increase in CO2 emissions. These findings suggest a complex and context-dependent 

relationship between forestation and CO2 emissions, necessitating nuanced global CO2 

emission reduction strategies. Mujtaba et al. (2022) investigated the symmetric and 

asymmetric impact of economic growth, capital formation, and energy consumption on the 

environment. Using the CS-ARDL estimation technique, the study found that deforestation, 

coupled with fossil fuel consumption, exacerbates CO2 emissions. Similarly, Kocoglu et al. 

(2024) employed a panel data approach along with the cointegration test and the CS-ARDL 

estimation technique to analyze the role of fossil fuels and renewable energy in 

environmental sustainability, concluding that deforestation remains a critical factor driving 

CO2 emissions in OECD countries. 

The impact of deforestation on CO2 emissions in SSA has been highlighted by (Sakala et al., 

2023), who focused on the effects of charcoal production on carbon cycling in African 

biomes. Utilizing the LPJ-GUESS model, the study revealed that deforestation for charcoal 

production significantly alters carbon stock dynamics, leading to increased CO2 emissions. 

This underscores the need for policies aimed at sustainable charcoal production and forest 

management in SSA. 

Uganda's deforestation and its impact on CO2 emissions have been studied by several 

researchers. Naturinda et al. (2019) conducted a study to understand the economic 

consequences of deforestation on carbon emissions in Mabira Forest, Uganda, spanning the 

years 1995, 2008, and 2018, utilizing satellite imagery, Erdas software, the Invest model, and 

advanced GIS techniques to model carbon stocks and carbon loss. The analysis revealed a 

decrease in total carbon stock from 9,150,447.78 Mg C in 1995 to 8,481,434.67 Mg C in 

2018, correlating with a reduction in tropical high forest cover from 65.81% to 58.13% over 

the same period. This deforestation led to increased carbon emissions, with the financial loss 

escalating from Ush47 trillion between 1995 and 2008 to Ush144 trillion between 2008 and 

2018. The findings underscore the importance of incorporating the monetary value of forest 

carbon sequestration into environmental planning and policy-making. 
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Furthermore, Olupot et al. (2017) investigated the impact of land use and land cover (LULC) 

changes on CO2-equivalent (CO2-e) emissions in Uganda's protected areas (PAs). The study 

focused on several national parks, including Kibale National Park, Mt Elgon National Park, 

and Bwindi Impenetrable National Park. The research spanned various periods, assessing 

changes over several decades. The statistical methods included evaluations of biomass and 

soil carbon stocks, comparing different LULC types such as indigenous tree species, tropical 

high forests (ITHF), degraded forests (DTHF), grasslands, and maize fields. The findings 

revealed significant CO2-e sequestration by mature native forests, with deliberate 

revegetation efforts resulting in a net increase in CO2-e sequestration. Conversely, shifts from 

ITHF to DTHF or grassland led to substantial CO2-e losses. Soil carbon stocks were highest 

under maize but were deeper under forest covers, emphasizing the importance of forests in 

carbon sequestration. The study concluded that changes in LULC away from native types 

result in net CO2-e losses, highlighting the necessity of conserving PAs for climate change 

mitigation. 

2.2.4 The Effect of GDP per Capita on CO2 Emissions 

In the OECD countries, a clear pattern of the Environmental Kuznets Curve (EKC) has been 

observed, where economic growth initially leads to higher emissions but eventually results in 

lower emissions as economies transition to more sustainable practices. For instance, a study 

analysing OECD countries over the period 1992-2018 found that GDP per capita positively 

affects CO2 emissions, highlighting the initial stages of economic growth where industrial 

activities dominate (Kutlu and Örün, 2023). However, with technological advancements and 

stringent environmental policies, these countries have started to witness a decline in 

emissions, showcasing the inverted U-shaped relationship described by the EKC theory (Le 

Quéré et al., 2020). 

In contrast, the ASEAN region presents a more complex scenario. Rapid industrialization and 

urbanization have significantly increased CO2 emissions, with economic growth closely tied 

to energy consumption patterns. A study examining the impact of GDP per capita on 

environmental degradation in ASEAN countries highlighted that the increase in GDP per 

capita consistently leads to higher emissions due to heavy reliance on fossil fuels and lack of 

stringent environmental regulations (Batool et al., 2022). This pattern suggests that ASEAN 

countries are still in the upward phase of the EKC, where economic growth exacerbates 

environmental degradation. 



25 
 

The situation in Sub-Saharan Africa (SSA) and East Africa is markedly different due to lower 

levels of industrialization and economic activity compared to OECD and ASEAN regions. In 

SSA, the relationship between GDP per capita and CO2 emissions is not as pronounced, 

primarily due to lower overall emissions and economic activities. However, as these regions 

continue to develop, the potential for increased emissions is significant if development 

follows the same carbon-intensive paths as seen in other regions. A study focusing on East 

Africa found that economic growth is associated with rising emissions, but the absolute levels 

remain lower compared to more industrialized regions (Gebrechorkos et al., 2023). Similarly, 

(Namahoro et al., 2021) examined the asymmetric nexus between renewable energy, 

economic growth, population growth and CO2 emissions in seven East African countries 

(EACs) using the Common correlated effect means group (CCEMG), nonlinear 

autoregressive distributed lagged (NARDL), and causality tests for panel data from 1980 to 

2016 and found that economic and population growth positively affect CO2 emissions at the 

regional level. 

Specifically, in Uganda, the relationship between GDP per capita and CO2 emissions reflects 

the broader trends seen in East Africa. Economic activities are still predominantly agrarian, 

with limited industrialization. However, recent developments in sectors such as 

manufacturing and services have started to impact emissions. A study on Uganda's economic 

development and environmental impact noted that while current emissions are relatively low, 

future economic growth could lead to higher emissions if not managed sustainably (Kiggundu 

et al., 2022). Therefore, Uganda faces a critical juncture where sustainable development 

practices must be integrated into its economic growth strategies to avoid the pitfalls of 

increased CO2 emissions witnessed in other regions. 

Furthermore, a by Appiah et al. (2019) study investigated the impact of economic growth on 

carbon dioxide emissions in Uganda from 1990 to 2014 using an autoregressive distributed 

lag (ARDL) approach. It found that a 1% increase in economic growth led to increases in 

carbon emissions by 31.1%.  Conversely, a more recent study by (Otim et al., 2022) 

examining the effects of economic growth, measured by per capita gross domestic product 

(GDP), on carbon dioxide emissions in Uganda from 1986 to 2018 using the vector error 

correction model found a significant long-run relationship between GDP per capita and 

carbon emissions per capita, with an estimated elasticity of 1.856. Their results further 

indicated unidirectional causality flowing from GDP per capita to carbon dioxide emissions 

without feedback, supporting the environmental Kuznets curve hypothesis. Additionally, 
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although no causal link between energy consumption per capita and GDP per capita was 

observed, their findings confirmed that per capita GDP positively influenced carbon dioxide 

emissions in Uganda. 

2.3 The research gaps 

The empirical literature reviewed reveals significant insights into the factors influencing CO2 

emissions, including GDP per capita, urbanization, industrialization, and deforestation. 

However, several research gaps remain unaddressed, particularly in the context of developing 

countries like Uganda. 

Firstly, the Environmental Kuznets Curve (EKC) hypothesis has been extensively studied in 

developed countries, where a clear pattern of initially rising CO2 emissions followed by a 

decline as economies mature has been observed. This trend, however, is less clear in 

developing regions. For instance, in the ASEAN countries, rapid industrialization and 

urbanization continue to drive CO2 emissions upward, indicating that these countries are still 

in the upward phase of the EKC (Batool et al., 2022). Similarly, in Sub-Saharan Africa and 

East Africa, the relationship between GDP per capita and CO2 emissions is not as 

pronounced due to lower levels of industrialization. Nevertheless, as these regions develop, 

the potential for increased emissions looms large (Gebrechorkos et al., 2023; Namahoro et 

al., 2021). Specifically, in Uganda, recent studies have highlighted that while current CO2 

emissions are relatively low, future economic growth, if not managed sustainably, could lead 

to higher emissions (Kiggundu et al., 2022). There is a need for more focused research to 

ascertain whether the EKC hypothesis holds in Uganda and to identify the income threshold 

at which CO2 emissions might begin to decline. 

Secondly, urbanization's impact on CO2 emissions is well-documented in various contexts, 

yet the relationship can be non-linear and context-dependent. Studies have shown that 

urbanization initially increases CO2 emissions due to higher energy consumption and 

transportation needs but may lead to emission reductions as cities develop more efficient 

public transportation systems and adopt stricter environmental regulations (Liu and Bae, 

2018). In Uganda, urbanization is still evolving, and its impact on CO2 emissions requires 

further empirical investigation to understand the extent to which urban planning and policy 

interventions can mitigate emissions. 

Thirdly, the role of industrialization in driving CO2 emissions varies significantly across 

regions. In the OECD countries, technological advancements and stringent environmental 



27 
 

regulations have helped decouple industrial growth from CO2 emissions to some extent 

(Wang et al., 2021). In contrast, the ASEAN region and Sub-Saharan Africa continue to 

experience rising emissions due to energy-intensive industrial activities and a lack of 

stringent emission control policies (Zafar et al., 2020; Salahuddin et al., 2019). In Uganda, 

industrial growth has been associated with increased CO2 emissions, yet the findings are 

mixed. Some studies suggest that industrialization significantly increases emissions, while 

others highlight the potential for sustainable industrial practices to mitigate this impact 

(Appiah et al., 2019; Okillong and Luwedde, 2023). This disparity indicates a need for more 

nuanced research to explore the specific conditions under which industrialization can either 

exacerbate or mitigate CO2 emissions in Uganda. 

Lastly, deforestation's impact on CO2 emissions is a critical concern, especially in regions 

like Uganda where forest resources are integral to economic activities. Empirical studies have 

shown that deforestation significantly contributes to CO2 emissions, with substantial 

variations across different contexts (Kocoglu et al., 2024; Raihan et al., 2022a). In Uganda, 

deforestation has led to significant carbon emissions, highlighting the urgent need for 

sustainable land management practices (Naturinda et al., 2019; Olupot et al., 2017). However, 

there is a lack of comprehensive studies that integrate the impact of deforestation with other 

economic activities such as manufacturing and urbanization in driving CO2 emissions. 

Research Gap Addressed by the Current Study 

The current study aims to fill these gaps by investigating the effect of the annual 

deforestation rate, manufacturing value added, urbanization, and GDP per capita growth on 

CO2 emissions in Uganda from 1990 to 2020. By focusing on Uganda, the study will provide 

insights into the applicability of the EKC hypothesis in a developing country context and 

identify the critical factors that influence CO2 emissions during different stages of economic 

development. It will also explore the non-linear relationship between urbanization and CO2 

emissions, taking into account the specific urbanization patterns and policies in Uganda. 

Furthermore, the study will examine the impact of industrialization on CO2 emissions, 

considering both the potential for sustainable industrial practices and the challenges posed by 

energy-intensive activities. Lastly, it will integrate the effects of deforestation with other 

economic activities, providing a holistic understanding of the drivers of CO2 emissions in 

Uganda. This comprehensive approach will contribute to the formulation of effective policies 



28 
 

aimed at promoting sustainable development and mitigating the adverse environmental 

impacts of economic growth. 

 

 

 

CHAPTER THREE 

METHODOLOGY 

 

 3.0 Introduction 

 

This chapter explains the methodology which was used in this study to examine the 

macroeconomic determinants of carbon dioxide emissions (CO2E) in Uganda from 1990 to 

2020. It describes the research design, data collection methods, data sources, and analytical 

techniques used to meet the research objectives and test the hypotheses presented in chapter 

one. By meticulously detailing each methodological step, this chapter not only enhances the 

robustness and reliability of the findings but also establishes a comprehensive framework that 

facilitates replication and validation by other researchers. 

3.1 Research design 

 

This study adopted a longitudinal research design to analyse the macroeconomic 

determinants of CO2 emissions in Uganda from 1990-2020. The choice of the research 

design wss guided by its suitability and efficiency in examining progressive trends and 

relationships among time series data over a specified period (Hoffman, 2015).. The 

longitudinal research design facilitates a consistent and robust analysis of variable behavior 

over time, enabling precise predictions of long-term effects of various factors on the observed 

phenomena (Hopwood et al., 2022). 

3.2 Data Management 

3.2.1 Data Sources and types 
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Annual time series data pertaining to carbon dioxide emissions and its determinants for the 

period from 1990 to 2020 were obtained from the Global Forest Watch (accessed at: 

https://www.globalforestwatch.org/dashboards/country/UGA), World Development 

Indicators portal, (accessed at: https://databank.worldbank.org/source/world-development-

indicators#). Furthermore, for those data points where absence is noted in the World 

Development Indicators datasets, supplementary values were sourced by consulting various 

credible macroeconomic data repositories, inclusive of records pertinent to Uganda such as 

Uganda Bureau of Statistic (UBOS), and Interactive Country Fiches (accessed at: 

https://dicf.unepgrid.ch/uganda/forest). 

3.2.2 Data measurement 

In this study, the unit of measure for CO2 emissions, the dependent variable, is thousands of 

metric tons. This metric quantifies the total emissions released into the atmosphere from 

various sources, including industrial processes, transportation, and energy production. The 

primary focus is on how certain economic and demographic factors influence these 

emissions. 

Manufacturing value added, one of the independent variables determining CO2 emissions, is 

measured as a percentage of GDP. This reflects the contribution of manufacturing activities 

to the overall economy and is indicative of industrial growth and activity levels. Higher 

manufacturing output often correlates with increased CO2 emissions due to energy 

consumption and industrial processes involved in production. 

Total urban population, another independent variable, is measured by the number of people 

residing in urban areas. This metric captures the demographic shift towards urbanization, 

which typically leads to higher CO2 emissions due to increased demand for transportation, 

housing, and energy in cities. Urban populations tend to have higher per capita energy 

consumption and consequently, higher per capita emissions. 

GDP per capita, also an independent variable, is measured by dividing the total GDP of the 

country by its population. This indicator reflects the average economic output per person and 

serves as a proxy for the standard of living and economic development. Higher GDP per 

capita often corresponds with greater consumption of goods and services, which can lead to 

higher CO2 emissions due to increased energy use and industrial activity. 

The annual deforestation rate, another critical independent variable, is measured as the 

percentage reduction in forest area each year. This metric indicates the rate at which forest 
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land is being converted to other uses, such as agriculture or urban development. Deforestation 

contributes to CO2 emissions because trees that are cut down release stored carbon dioxide 

back into the atmosphere. The annual deforestation rate was calculated using the formula: 

                          (   )  
                                

                
             

 

where: 

 Forest Areayear1 refers to the forest area at the initial year. 

 Forest Areayear is the forest area at the end of the current year. 

 

This formula measures the percentage change in forest area from one year to the next, 

providing a clear picture of how quickly forest cover is diminishing. 

3.2.3 Sample Size and Procedures  

In this research will establish the sample size by leveraging the availability of reliable and 

current data spanning from 1990 to 2020. Rather than employing a rigid mathematical 

formula, data on the variables of interest from this timeframe will be purposefully selected 

(Oso and Onen, 2009). This choice yielded a total of 31 annual data points, which we 

subsequently transformed into quarterly data to bolster the statistical strength of our analysis, 

resulting in 124 total observations. This approach is consistent with the principles outlined in 

the Central Limit Theorem, which advocates for a minimum sample size of 30 observations 

(Lehmann and Casella, 2006) and ideally more than 60 (Groebner et al., 2013). By adhering 

to these statistical guidelines, the researcher will ensure that the model maintains a high level 

of predictive accuracy and minimized the margin of error associated with a smaller sample 

size. 

3.3 Data Retrieval Methods 

The database search/archive retrieval method Cheng and Phillips (2014) will be employed to 

retrieve relevant data on the study variables. This approach involves secondary data 

collection, in which the researcher meticulously analyses official datasets from various online 

sources, including governmental records, statistical databases, and research archives, to 

identify data relevant to the study variables. Subsequently, the data is organized for analysis 

and inference generation (Mazhar et al., 2021). An archive retrieval checklist serves as the 

primary tool in this investigation, acting as a roadmap to guide an in-depth and meaningful 
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examination of documents and datasets pertinent to the research variables. This methodology 

is chosen due to its effectiveness in structuring the retrieval of secondary data (Rassel et al., 

2020), the constraints of time, and my specific interest in investigating the factors 

contributing to CO2 emissions. The focus will be on monitoring changes over time, 

identifying trends, and establishing a temporal sequence, all of which necessitate the 

collection and critical analysis of time-series data relevant to the research goals (Sileyew, 

2019). 

 

3.3.1 Data Cleaning and Editing 

In order to align the secondary dataset with the goals of this research, a meticulous process of 

data preparation and refinement will be undertaken. This will involve systematically 

addressing outliers, accounting for missing values, verifying consistency, and standardizing 

variable formats. Such steps were critical to guarantee the integrity and suitability of the 

dataset for performing robust statistical analyses and deriving valid conclusions. 

3.3.2 Descriptive Data Analysis 

A comprehensive descriptive analysis will be performed on the raw secondary data utilizing 

EViews 13. This process included the computation of various statistical metrics related to 

central tendency, variability, and distribution normality. Following the initial description and 

aggregation of data concerning the research variables, the findings will be organized into a 

table. Trend graphs  will also be drawn(Haneem et al., 2017).  

 3.4 Model specification 

Based on the review of economic literature, the theoretical model for this study is specified 

based on the Environmental Kuznets Curve (EKC) hypothesis. This is then extended to 

incorporate the expected determinants of CO2 emissions in Uganda (viz, the annual 

deforestation rate, manufacturing value added, total urban population. Then by taking natural 

logs of the variables to linearize and capture elasticities and by including the stochastic error 

term, the econometric form of the model is developed. This is followed by performing 

diagnostic tests on the selected variables, Cointegration Test and specification of the Vector 

Error Correction Model (VECM) to establish the long-term and short-term relationships 

between CO2 emissions and its determinants in Uganda.  
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3.4.1 Specification of the Theoretical Model 

 

The Environmental Kuznets Curve (EKC) hypothesis suggests an inverted U-shaped 

relationship between environmental degradation and economic growth. To model the effect of 

annual deforestation rate (ADR), manufacturing value added (MVA), urbanization (UP), and 

GDP per capita (GDPc) on CO2 emissions (CO2), we start with a basic functional form of the 

EKC hypothesis: 

𝐸  𝛼 + 𝛽𝑌 + 𝛾𝑌 
2                                                                                                 (   ) 

where: 

Et represents the environmental degradation (CO2 emissions) at time t, Yt represents GDP per 

capita at time t, Yt
2 

represents the squared term of GDP per capita to capture the inverted U-

shaped relationship, α is the intercept term, β and γ are the coefficients to be estimated 

Operationalizing and extending the EKC model to include additional determinants of CO2 

emission viz; annual deforestation rate (ADR), manufacturing value added (MVA), total 

urban population (UP), and the stochastic error term we have: 

𝐶𝑂2  𝛼 + 𝛿1𝐺 𝑃𝑝𝑐 + 𝛿1(𝐺 𝑃𝑝𝑐 )
2 + 𝛾1    + 𝛾2𝑀𝑉  + 𝛾3𝑈𝑃 

+ 𝜖                                                       (  2) 

where: 

CO2t is the CO2 emissions at time t, GDPpct is the GDP per capita at time t, (GDPpct)
2
 is the 

squared term of GDP per capita, ADRt is the annual deforestation rate at time t, MVAt is the 

manufacturing value added at time t, UPt is the level of urbanization at time t, α is the 

intercept term, δ1, δ2, γ1, γ2, γ3 are the coefficients to be estimated and ϵt is the error term 

To capture elasticities and stabilize variances, a log-log model is developed. Taking natural 

logarithms of all variables yields: 

  (𝐶𝑂2 )  𝛼 + 𝛿1ln (𝐺 𝑃𝑝𝑐 ) + 𝛿2[ln (𝐺 𝑃𝑝𝑐 )]
2 + 𝛾1ln (    ) + 𝛾2ln (𝑀𝑉  )

+ 𝛾3ln (𝑈𝑃 ) +∈          (   ) 

where: 

 ln (CO2t) is the natural log of CO2 emissions at time t,   
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 ln (GDPpct) is the natural log of GDP per capita at time t,  

 [ln (GDPpct)]
2
 is the squared term of the natural log of GDP per capita to capture the 

inverted U-shaped relationship, 

 Ln (ADRt) is the natural log of annual deforestation rate at time t, 

 Ln (MVAt) is the natural log of manufacturing value added at time t, 

 Ln (UPt) is the natural log of urbanization at time t, 

 α is the intercept term 

 δ1, δ2, γ1, γ2, γ3 are the coefficients to be estimated 

 ϵt is the error term 

3.4.2 Variable Description and Justification 

The choice of independent variables and their hypothesized effects on CO2 emissions were 

based on a blend of theoretical insights and empirical evidence. The summary in Table 3.1 

outlines the reasoning for each variable and the expected relationship it has with CO2 

emissions as the dependent variable. 

 

 

 

Table 3.1: Summary of Variables and A Priori Expectations 

Variable Name Definition and Measure Justification Sign 

GDP per Capita 

(GDPpc) 

The total economic output 

divided by the population, 

measured in constant dollars 

This variable is included to capture the economic 

development level, which is hypothesized to follow the 

Environmental Kuznets Curve (EKC) hypothesis. 

Studies by Grossman and Krueger (1991) and 

Panayotou (1993) support this. 

Positive then 

Negative 

(inverted U-

shape) 

Annual 

Deforestation Rate 

(ADR) 

The rate at which forest area is 

lost annually, measured as a 

percentage of total forest area 

This variable is included because deforestation 

contributes to CO2 emissions. Supported by studies by 

Angelsen and Kaimowitz (1999) and Geist and Lambin 

(2002). 

Positive 

Manufacturing 

Value Added 

(MVA) 

The value of manufacturing 

output minus the value of 

intermediate inputs, measured 

as a percentage of GDP 

This variable is included to capture the impact of 

industrial activity on CO2 emissions. Studies by Suri 

and Chapman (1998) and Zhang (2012) support this. 

Positive 

Urbanization (UP) 
The proportion of the 

population living in urban areas 

This variable is included because urbanization often 

leads to increased energy consumption and CO2 

emissions. Supported by studies by Jones and Kammen 

(2011) and Chen et al. (2014). 

Positive 

Source: Author’s analysis of theoretical and empirical literature 

3.5 Estimation Methods 

Given the potential for long-term equilibrium relationships between the variables, a Vector 

Error Correction Model (VECM) was employed. The Vector Error Correction Model 
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(VECM) is an advanced multivariate time series model designed to capture both the short-

term dynamics and long-term equilibrium relationships among non-stationary variables that 

are cointegrated. By incorporating an error correction term, the VECM adjusts short-term 

deviations from the long-term equilibrium, ensuring that the system eventually converges 

back to equilibrium. This feature makes the VECM particularly valuable for analysing 

economic and financial time series data, where both long-term relationships and short-term 

adjustments are crucial. 

In this study, the VECM was employed due to the presence of unit roots, a common 

characteristic in time series data, which indicated that the variables were non-stationary at 

their levels (I(0)) and at their second differences (I(2)), but stationary at their first differences 

(I(1)). Since the series were integrated of order one, the VECM was deemed the most 

appropriate model to simultaneously capture the short-term dynamics and the long-term 

equilibrium relationships among the variables. 

To estimate the VECM, a series of steps were undertaken. First, we tested for stationarity to 

ensure that none of the series were integrated of order zero (I(0)) or two (I(2)). Next, we 

determined the optimal number of lags using standard information criteria such as Akaike 

(AIC), Schwarz (SC), and Hanna-Quinn (HQ). Following this, we performed the Johansen 

cointegration test to identify the long-term relationships among the variables. Finally, we 

estimated the VECM based on the established cointegration relationships. This 

methodological approach ensured a rigorous and systematic analysis of the data, providing 

robust insights into both the short-term and long-term dynamics of the economic variables 

under study. 

3.5.1 Testing for Unit Root   

The Augmented Dickey-Fuller (ADF) test was used to test for the stationarity of the log-

transformed study variables. The ADF test extends the Dickey-Fuller test to include higher-

order autoregressive processes, thereby correcting for autocorrelation. In this study, the ADF 

test was undertaken for the log of GDP per capita (GDPpc), annual deforestation rate (ADR), 

manufacturing value added (MVA), total urban population (UP) and CO2 emissions (CO2). 

The general form of the ADF test equation for a variable Y is given by: 

 ln (𝑌 )  𝛼 + 𝛽 + 𝛾 ln (𝑌  1) +∑ 𝛿   ln (𝑌  1) +∈ 

 

  1
            (   ) 

where: 
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Δ ln (Yt) is the first difference of the natural logarithm of the variable Y; α is a constant; βt is 

the coefficient on a time trend t; γ is the coefficient of the lagged level of the natural 

logarithm of Y; δi are the coefficients of the lagged first differences of ln (Y)t; p is the 

number of lagged first differences included (lag order), and ϵt is the error term. The null 

hypothesis (H0) of the ADF test is that the series has a unit root (is non-stationary). 

Basing on the foregoing equation, the ADF test was conducted for CO2 emissions (CO2), 

annual deforestation rate (ADR), manufacturing value added (MVA), urban population (UP), 

and GDP per capita (GDPpc) with the following specifications: 

1. ADF test Specification for CO2 emissions 

  ln (𝐶𝑂2 )

 𝛼  2  + 𝛽  2 + 𝛾  2 ln (𝐶𝑂2  1)

+∑ 𝛿  2    ln (𝐶𝑂2  1) +∈  2  

 

  1
 (   ) 

Where: 

Δln(CO2t) is the first difference of the natural log of CO2 emissions at time t; αCO2 is the 

intercept term; βCO2 is the coefficient on the time trend; γCO2 is the coefficient on the lagged 

level of the natural log of CO2 emissions; δCO2, i are the coefficients on the lagged differences 

of the natural log of CO2 emissions and ϵCO2, t is the error term 

 

2. ADF test specification for the Annual Deforestation Rate (ADR): 

  ln (    )

 𝛼     + 𝛽    + 𝛾    ln (     1)

+∑ 𝛿       ln (     1) +∈     
 

  1
        (   ) 

3. ADF test specification for manufacturing value added (MVA): 

  ln (𝑀𝑉  )

 𝛼     + 𝛽    + 𝛾    ln (𝑀𝑉   1)

+∑ 𝛿       ln (𝑀𝑉   1) +∈     

 

  1
 (   ) 

4. ADF test specification for total urban population (UP): 

  ln (𝑈𝑃 )  𝛼    + 𝛽   + 𝛾   ln (𝑈𝑃  1) +∑ 𝛿      ln (𝑈𝑃  1) +∈    

 

  1
 (   ) 

5. ADF unit root test specification for GDP per Capita (GDPpc): 
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  ln (𝐺 𝑃𝑝𝑐 )  𝛼𝐺   𝑐  + 𝛽𝐺   𝑐 + 𝛾𝐺   𝑐 ln (𝐺 𝑃𝑝𝑐  1)

+∑ 𝛿𝐺   𝑐    ln (𝐺 𝑃𝑝𝑐  1) +∈𝐺   𝑐  

 

  1
                           (   ) 

By taking the first differences of variables that were integrated of order one (I(1))—ensuring 

they were neither integrated of order zero (I(0)) nor order two (I(2))—the resulting stationary 

series provided a solid foundation for estimating the Vector Error Correction Model (VECM). 

This approach ensured that the variables used in the VECM were stationary, which was a 

critical requirement for producing robust and consistent estimates of the population 

parameters. Stationarity in the first-differenced series allowed the VECM to effectively 

capture both the short-term dynamics and long-term equilibrium relationships among the 

variables, leading to reliable and meaningful econometric analysis. 

 

3.5.2 Optimal Lag Length determination  

 

In order to identify the most suitable criterion for determining the optimal lag length in the 

model, unrestricted VAR estimates were generated under the premise that the series exhibited 

no co-integration. Adhering to established selection criteria, specifically IC(p) as initially 

proposed by Vahid and Engle (1993)  and cited in the work of Carrasco Gutierrez et al. 

(2009), our estimation process comprised multiple steps. Initially, a VAR analysis was 

conducted using the level forms of the endogenous variables, with an initial arbitrary 

selection of lags set to reflect the data's temporal characteristics, such as four lags for 

quarterly datasets. Subsequently, the optimal lag length, denoted as p, was estimated utilizing 

conventional information criteria including Akaike (AIC), Schwarz (SC), and Hannan-Quinn 

(HQ) as recommended by Almeshqab et al. (2019). The lag length that minimized these 

information criteria was ultimately selected for the VAR in levels. In conclusion, following 

the determination of the optimal lag length, the Johansen cointegration test was applied, 

leading to the estimation of the final Vector Error Correction Model (VECM). This structured 

methodology ensured that the selection of lag length was performed based on stringent 

statistical principles, establishing a solid groundwork for subsequent analyses. 

3.5.3 The Johansen cointegration Test 

This phase included estimating the Johansen cointegration test, developed by Johansen and 

Juselius (1990), to assess the existence of long-run cointegrating relationships among the I(1) 
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variables. The focus of this test is on the levels of the series rather than their first differences. 

In this analysis, the variables were transformed using natural logarithms, which were then 

employed to explore the long-run relationships. According to Johansen and Juselius, the 

multivariate cointegration model is represented as follows: 

     ∏   1 + ∑       1
  1
   1 +                    (    )      

Where Π and Γi are coefficient matrices, Δ is the difference operator, and P is the lag order 

selected based on the Schwarz Bayesian Criterion (SBC). The Johansen and Juselius 

cointegration test involve two likelihood ratio tests: the trace test and the maximum 

eigenvalue test, which are calculated as follows: 

      ∑ ln (   ̂ 
 

    1
                           (    )   

𝑀        (   ̂  1)                          (   2)    

Where  ̂ represents the estimated eigenvalue of the characteristic roots and T denotes the 

sample size. In the trace test, the null hypothesis (H0) assesses the number of cointegrating 

vectors r against the alternative hypothesis (H1) of n cointegrating vectors. Similarly, in the 

maximum eigenvalue test, the null hypothesis evaluates the number of cointegrating vectors r 

against the alternative hypothesis (H1) of r+1 cointegrating vectors. The presence of one or 

more cointegrating vectors indicates long-run equilibrium relationships among the variables. 

By conducting the cointegration test on only the level form of the variables and not on their 

first difference, we tested the null of non-existence of a long-run relationship (  :     = 

0) against the alternative hypothesis that a long run relationship exists (  :       ≠ 0). 

3.5.4 Estimation of the VECM 

To capture both the long run and short run dynamics between the series, we adopted the 

VECM approach by modifying equation 3.11 above basing on Pesaran and Shin (1996,2001) 

to generate to a general equation. The general form of the VECM with CO2 emissions as the 

dependent variable and independent variables including the annual deforestation rate (ADR), 

manufacturing value added (MVA), total urban population (UP) and GDP per capita 

(GDPpc) was specified as follows: 
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First, estimation of the Cointegrating Equation was done to identify the long-run 

equilibrium relationship between the variables using the Johansen cointegration test. The 

equation was of the following form: 

  (𝐶𝑂2 )  𝛼 + 𝛿1ln (𝐺 𝑃𝑝𝑐 ) + 𝛿2[ln (𝐺 𝑃𝑝𝑐 )]
2 + 𝛾1ln (    ) + 𝛾2ln (𝑀𝑉  )

+ 𝛾3ln (𝑈𝑃 ) +∈                                             (    )  

Then the residuals from the cointegrating equation were then used to specify the VECM 

model with an error correction term (ECT) for the log-transformed variables, which reflects 

deviations from the long-term equilibrium. The ECT specification for CO2 emissions was of 

the form: 

  ln (𝐶𝑂2 )   1(ln (𝐶𝑂2  1)  𝛼  𝛿1ln (𝐺 𝑃𝑝𝑐 )  𝛿2[ln (𝐺 𝑃𝑝𝑐 )]
2  𝛾1ln (    )

 𝛾2ln (𝑀𝑉  )  𝛾3ln (𝑈𝑃 ) +∑ 𝜙1 

  1

  1
Δln (𝐶𝑂2  1)

+∑ 𝜙2 

  1

  1
Δln (𝐺 𝑃𝑝𝑐  1) +∑ 𝜙3 Δ[ln (𝐺 𝑃𝑝𝑐  1)]

2
  1

  1

+∑ 𝜙4 

  1

  1
Δln (     1) + ∑ 𝜙5 

  1

  1
Δln (𝑀𝑉   1)

+∑ 𝜙6 

  1

  1
Δln (𝑈𝑃  1) +∈1     (    ) 

where: 

 Δln (CO2t) is the first difference of the natural log of CO2 emissions at time t 

 λ1 is the adjustment coefficient indicating the speed of adjustment to the long-run 

equilibrium 

 The term (ln (CO2t-1))-α-δ1ln (GDPpct-1)-δ2[ln (GDPpct-1)]
2
 -γ1ln (ADRt-1)- γ2ln 

(MVAt-1)-γ3ln (UPt-1)) is the error correction term (ECT) 

 ϕ1i, ϕ2i, ϕ3i, ϕ4i, ϕ5i, ϕ6i are the short-run coefficients for the lagged differences of the 

respective log-transformed variables. 

 ϵ1t is the error term 

The the detailed specification of the VECM for the determinants of CO2 emissions was as 

follows: 

1. GDP per capita (GDPpc) 
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2.  Squared GDP per Capita [(GDPpc)
2
] 

Δ[ln (𝐺 𝑃𝑝𝑐  1)]
2

  3𝐸𝐶  +∑ 𝜃1 
  1

  1
Δln (𝐶𝑂2  1) +∑ 𝜃2 

  1

  1
Δln (𝐺 𝑃𝑝𝑐  1)

+∑ 𝜃3 Δ[ln (𝐺 𝑃𝑝𝑐  1)]
2

  1

  1
+∑ 𝜃4 

  1

  1
Δln (     1)

+ ∑ 𝜃5 
  1

  1
Δln (𝑀𝑉   1) +∑ 𝜃6 

  1

  1
Δln (𝑈𝑃  1) +∈3    (    ) 

3. The Annual Deforestation Rate (ADR)  
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4. Manufacturing Value Added (MVA)- a proxy for industrialization 

Δln (𝑀𝑉  )

  5𝐸𝐶  +∑ 𝜇1 
  1

  1
Δln (𝐶𝑂2  1) +∑ 𝜇2 

  1

  1
Δln (𝐺 𝑃𝑝𝑐  1)

+∑ 𝜇3 Δ[ln (𝐺 𝑃𝑝𝑐  1)]
2

  1

  1
+∑ 𝜇4 

  1

  1
Δln (     1)

+ ∑ 𝜇5 
  1

  1
Δln (𝑀𝑉   1) +∑ 𝜇6 

  1

  1
Δln (𝑈𝑃  1) +∈5    (    ) 

5. Urban population (UP)- a proxy for urbanization 
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3.6 Diagnostic Tests 

3.6.1 Test for Normality 

The current study employed the Jarque-Bera statistic to test for normality in the data 

distribution. This statistic evaluates whether the sample data follows a normal distribution by 

comparing the skewness and kurtosis of the series to those of a normal distribution. 

According to (Gujarati, 2004), the test statistic is calculated using the formula: 

 

     
 

6
( 2 +

(  3) 

4
)                         (  2  )                                                                                                                

Where n=sample size, S=skewness coefficient, K=kurtosis coefficient. The statistic follows a 

chi-square distribution with 2 df. 

The null hypothesis posits that the data follows a normal distribution, whereas the alternative 

hypothesis asserts that the data does not. Thus, the null hypothesis of normality is rejected if 

the computed p-value of the Jarque-Bera (JB) statistic is less than the 5% significance level. 

Testing for normality is crucial in regression analysis because many statistical tests assume 

that the disturbances are normally distributed. The Jarque-Bera test helps validate this 

assumption, thereby ensuring the reliability of the regression results. 

3.6.2 Multicollinearity Test 

The Variance Inflation Factor (VIF) test will be used in this study to detect multicollinearity 

in the regression model. Multicollinearity occurs when there is a perfect or near-perfect linear 

relationship among the explanatory variables, leading to inflated standard errors of the 

estimated coefficients. Although multicollinearity does not affect the Best Linear Unbiased 

Estimators (BLUE) properties of OLS estimates, it can significantly impact the precision of 

the coefficient estimates. 
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3.7 Residual diagnostic tests 

To ascertain the appropriateness of the adopted model for the data spanning the sample 

period, several diagnostic tests will be conducted on the residuals. 

3.7.1 Coefficient of determination (R
2
). 

The R-squared (R
2
) statistic will be utilized to assess the goodness of fit of the regression 

model in predicting the dependent variable within the sample. Theoretically, an R
2
 value of 

one indicates a perfect fit, while a value of zero indicates no explanatory power of the model. 

R
2
 thus represents the proportion of variance in the dependent variable that is explained by 

the independent variables. It provides a measure of how well the regression model captures 

the overall variability of the dependent variable. 

3.7.2 The Jarque-Bera Test for normality 

To test the normality of residuals, the Jarque-Bera normality test will be employed at a 95% 

confidence level and a 5% significance level. Non-normality in the residuals indicates the 

presence of outliers or a general lack of model fit. The null hypothesis posits that the data is 

normally distributed, while the alternative hypothesis asserts non-normality. The decision 

criterion will involve to rejecting the null hypothesis if the P-value of the Jarque-Bera statistic 

is less than 5%, and to fail to reject it if the P-value exceeded 5%. 

3.7.3 Test for Serial Correlation 
This study will use the Breusch-Godfrey serial correlation Lagrange Multiplier test because 

according to (Gujarati and Porter, 2009), it is much more general in that it allows for both AR 

and MA error structures as well as the presence of a lagged regressand as an explanatory 

variable. This makes it more suitable for the VECM approach adopted in this study. 

The null hypothesis (H0) to be tested is that there is no serial correlation of any order against 

the alternative that there is serial correlation in the model’s residuals. Normally, when the p-

value is less than the critical value at 5% level of significance, the null can rejected, and 

where the p-value is greater than 5%, we fail to reject the null hypothesis.  

3.7.4 Heteroskedasticity Test 
According to the assumption of classical linear regression, the variance of the error term must 

be constant (Homoscedasticity) for all observations, E (  
 )    . If the error terms do not 

have constant variance, they are said to be heteroscedastic. This is undesirable for a good 

model. This study adopts the Breusch-Pagan-Godfrey heteroskedasticity test regressing 

squared residuals on the original regressors assuming the null hypothesis that the series are 

not heteroscedastic against the alternative that they are heteroscedastic. The decision 

criterion is that where the probability value of the F-statistic is less than the critical value at 
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5%, we reject the null and concluded that the series are heteroscedastic. But where the 

probability value is greater than 0.05 at 5% level of significance, we fail to reject the null 

hypothesis and concluded that there was no presence of heteroskedasticity. Similarly, where 

the chi-square probability of the observed R-squared is less than 5%, we reject the null 

hypothesis; otherwise, we fail to reject the null and concluded that the series are 

homoscedastic. 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FOUR 

DATA ANALYSIS AND PRESENTATION 

 

4.0 Introduction  

This chapter presents the findings from the various tests and analyses conducted on the data 

in relation to the objectives and hypotheses of the study. The presentation of findings is 

systematically structured, beginning with the results from the descriptive analysis of the 

variables under study, including trend analysis. This is followed by the results from bivariate 

analysis and pre-estimation diagnostic tests, such as tests for normality, stationarity, and 

multicollinearity. Subsequently, the chapter presents the estimation of the normalized 
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coefficients, providing insights into the long-term relationships among the variables. The 

chapter also includes the estimation and interpretation of the Vector Error Correction Model 

(VECM), highlighting both short-term dynamics and long-term equilibrium adjustments. 

Each section is detailed to ensure a comprehensive understanding of the data analysis process 

and the robustness of the results. The interpretation of findings and subsequent discussion 

aligns with the theoretical framework and empirical literature reviewed in earlier chapters, 

providing a thorough understanding of the results in the context of the study's objectives. This 

structured approach ensures clarity and coherence in presenting the study's key findings and 

their implications, ultimately laying a firm pedestal for the drawing of conclusions and policy 

recommendations on the macroeconomic determinants of CO2 emissions in Uganda. 

4.1 Descriptive Analysis  

 

4.1.1 Descriptive Statistics 

 

Table 4. 1: Descriptive statistics  

 

STATISTIC 

CARCONDIOXIDE 

EMISSIONS (CO2) 

ANNUAL 

DEFORESTATION 

RATE (ADR) 

MANUFACTURING 

VALUE ADDED 

(MVA) 

TOTAL URBAN 

POPULATION 

(UP) 

GDP PER 

CAPITA (GDPC) 

 Mean  2798.632  1.412144  10.45911  5376547.  483.7506 

 Median  2230.000  1.395232  7.354144  4695306.  330.6029 

 Maximum  6130.000  1.733953  17.14687  11414209  897.5097 

 Minimum  730.0000  1.154040  5.341026  1922173.  151.9765 

 Std. Dev.  1862.172  0.175995  4.696578  2809438.  278.2825 

 Skewness  0.493956  0.250444  0.409289  0.634780  0.354538 

 Kurtosis  1.775481  1.844372  1.289229  2.252321  1.306647 

      

 Jarque-Bera  3.197411  2.049052  4.645877  2.803958  4.353215 

 Probability  0.202158  0.358966  0.097985  0.246109  0.113426 

      

 Sum  86757.60  43.77645  324.2324  1.67E+08  14996.27 

 Sum Sq. Dev.  1.04E+08  0.929225  661.7353  2.37E+14  2323235. 

      

 Observations  31  31  31  31  31 

Source: Author’s analysis of World Bank data 

The descriptive statistics in Table 4.1 provide a comprehensive summary of the key variables 

under investigation in this study, which include carbon dioxide (CO2) emissions, annual 

deforestation rate (ADR), manufacturing value added (MVA), total urban population (UP), 

and GDP per capita (GDPC). These statistics offer insights into the central tendency, 

dispersion, and distributional characteristics of the data over the study period. 
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The mean value of CO2 emissions is 2798.632, with a median of 2230.000, indicating that 

the data are right-skewed, which is further supported by the positive skewness of 0.493956. 

The high standard deviation of 1862.172 highlights considerable variability in CO2 

emissions. This skewness and variability suggest that while most observations are 

concentrated around the lower values, there are some significantly higher emissions data 

points, likely corresponding to periods of intensified industrial activity or urbanization. In 

comparison to related empirical literature, similar patterns of high variability in CO2 

emissions have been observed in other developing economies where industrial growth and 

urbanization are uneven and sporadic. 

For ADR, the mean is 1.412144 with a median of 1.395232, showing a slight right skewness 

of 0.250444 and a low standard deviation of 0.175995. This indicates a relatively stable rate 

of deforestation over the period, though with slight fluctuations. The low kurtosis of 

1.844372 suggests fewer extreme deforestation rates compared to a normal distribution. 

Empirical studies in regions with high forest cover and agricultural pressures often report 

similar patterns, highlighting the consistent yet slightly increasing deforestation trends due to 

expanding agricultural activities. 

The MVA shows a mean of 10.45911 and a median of 7.354144, with a higher maximum 

value of 17.14687 and a minimum of 5.341026. The positive skewness of 0.409289 and low 

kurtosis of 1.289229 indicate a right-skewed distribution with moderate variability (standard 

deviation of 4.696578). These statistics imply that manufacturing activities are expanding, 

though they vary significantly year to year. This aligns with findings in other developing 

economies where industrial sectors are growing but not uniformly due to fluctuations in 

economic policies and investment levels. 

The UP has a mean of 5376547 and a median of 4695306, with significant variability as 

indicated by the standard deviation of 2809438. The positive skewness of 0.634780 and 

kurtosis of 2.252321 suggest a distribution skewed to the right with some concentration 

around the lower values, yet some much higher values, reflecting periods of rapid urban 

population growth. This pattern is consistent with urbanization trends in developing countries 

where migration to urban areas can accelerate quickly due to economic opportunities. 

The GDPC displays a mean of 483.7506 and a median of 330.6029, with a maximum of 

897.5097 and a minimum of 151.9765. The standard deviation of 278.2825 points to 

considerable variation in GDP per capita. The positive skewness of 0.354538 and low 
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kurtosis of 1.306647 suggest a right-skewed and flat distribution. This indicates that while 

there has been significant economic growth, the distribution of income is uneven, which is a 

common scenario in developing economies transitioning towards higher income levels. 

4.1.2 Trends of Variables 

4.1.2.1 Trend of CO2 emissions in Uganda 1990-2020  

Figure 4.1 below shows the trend of Carbon dioxide emissions in Uganda from 1990 to 2020. 

Figure 4. 1: The trend of CO2 emissions in Uganda, 1990-2020. 
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Source: Author’s analysis of World Bank data 

The trend of CO2 emissions in Uganda from 1990 to 2020 reveals a significant and mostly 

consistent increase over the three decades, with a few notable fluctuations. In 1990, CO2 

emissions were relatively low at 790.0 metric tons, indicative of a less industrialized and 

more agrarian economy with limited fossil fuel consumption. This level remained relatively 

stable until 1994, where emissions experienced a slight drop to 730.0 metric tons. This drop 

could be attributed to economic or policy factors that temporarily reduced industrial activity 

or improved efficiency in energy use. 

From 1995 onwards, CO2 emissions began to rise sharply, reaching 960.0 metric tons and 

continuing to increase almost every year. By 1996, emissions had climbed to 1070.0 metric 

tons, and by 1997, they had increased further to 1130.0 metric tons. This period marks the 
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beginning of significant economic growth and industrialization in Uganda, driven by both 

domestic and foreign investments in manufacturing and other energy-intensive sectors. 

The late 1990s and early 2000s saw a continued upward trajectory, with emissions reaching 

1320.0 metric tons in 1999 and 1350.0 metric tons in 2001. The implementation of 

infrastructure projects and the expansion of urban areas likely contributed to this growth. By 

2002, emissions had risen to 1540.0 metric tons, reflecting the increasing use of fossil fuels in 

transportation, industrial processes, and electricity generation. 

The mid-2000s witnessed a more rapid increase in emissions. By 2005, CO2 emissions had 

surged to 2230.0 metric tons, doubling from the levels seen a decade earlier. This sharp rise 

can be attributed to accelerated industrialization and urbanization, coupled with the expansion 

of the manufacturing sector and increased energy consumption from both commercial and 

residential sources. 

In the following years, emissions continued to escalate. By 2008, emissions had reached 

3180.0 metric tons, and by 2010, they had grown to 3850.0 metric tons. The early 2010s 

continued this trend, with emissions peaking at 4270.0 metric tons in 2013. This period was 

characterized by further industrial expansion, increased vehicle usage, and a growing urban 

population, all contributing to higher fossil fuel consumption. 

After a slight dip in 2012 to 3910.0 metric tons, emissions resumed their upward climb, 

reaching 4740.0 metric tons in 2014 and 4860.0 metric tons in 2015. The latter half of the 

decade saw even more pronounced increases, with emissions hitting 5670.0 metric tons in 

2016 and peaking at 6130.0 metric tons in 2018. These record-high levels reflect the 

culmination of several factors, including sustained economic growth, significant increases in 

industrial activity, and extensive deforestation for agricultural expansion and urban 

development. 

The trend of CO2 emissions in Uganda from 1990 to 2020 thus illustrates the environmental 

impact of rapid economic growth, industrialization, and urbanization. The fluctuations and 

steady increases in emissions highlight the need for sustainable development practices and 

policies aimed at mitigating the adverse environmental effects of economic progress. These 

findings are consistent with patterns observed in other developing economies undergoing 

similar transitions, where economic growth often leads to increased CO2 emissions unless 

countered by stringent environmental regulations and investments in green technologies. 
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4.1.2.2 Trend of Uganda’s annual deforestation rate (%) for the period 1990 to 2020 

Figure 4.2 traces the trend of deforestation rate (%) in Uganda from 1990 to 2020.  

Figure 4. 2: Trend of Uganda’s deforestation rate (%) 1990-2020. 
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Source: Author’s analysis of World Bank data 

The annual deforestation rate in Uganda from 1990 to 2020 shows a consistent upward trend, 

which closely parallels the rise in CO2 emissions over the same period. In 1990, the 

deforestation rate stood at 1.154040, reflecting the early stages of significant land-use 

changes. As Uganda began to experience economic growth and development, the pressure on 

forested areas increased, driven by the need for agricultural land, timber, and urban 

expansion. This led to a gradual increase in deforestation rates, reaching 1.211591 by 1994. 

From the mid-1990s onwards, the deforestation rate accelerated, rising to 1.239573 in 1996 

and 1.271400 by 1998. This period corresponds with the onset of more intensive agricultural 

practices and expanding urbanization, necessitating the clearing of forest land. The increase 

in manufacturing activities and infrastructure development also contributed to higher 

deforestation rates, as forests were cleared to make way for factories, roads, and residential 

areas. By 2000, the deforestation rate had climbed to 1.304152, a clear indication of the 

escalating demand for land resources. 
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The early 2000s saw continued growth in deforestation rates, reaching 1.339056 in 2002 and 

1.358171 in 2003. This era was marked by increased economic activities and population 

growth, which further exacerbated the pressure on forest resources. As the economy 

diversified and industrial activities expanded, more land was required for both commercial 

and subsistence farming. By 2005, the deforestation rate had risen to 1.395232, mirroring the 

significant increase in CO2 emissions during this period. 

The subsequent years witnessed even sharper increases in deforestation rates, with notable 

spikes in 2007 and 2009, where rates reached 1.433694 and 1.477722, respectively. These 

years were characterized by substantial economic growth, leading to higher energy demands 

and greater exploitation of natural resources. The deforestation rate peaked at 1.497497 in 

2010, reflecting the cumulative impact of two decades of economic development and land-

use changes. 

In the 2010s, the deforestation rate continued its upward trajectory, reaching 1.526810 in 

2011 and 1.557268 in 2012. This period saw a sustained increase in CO2 emissions, 

correlating with the higher deforestation rates. The relationship between deforestation and 

CO2 emissions became increasingly evident as forest clearing for agriculture, urban 

development, and industrial activities released significant amounts of carbon stored in trees 

into the atmosphere. By 2015, the deforestation rate had climbed to 1.620621, further 

contributing to the rise in CO2 emissions. 

The latter part of the decade showed continued increases in deforestation, with the rate 

reaching 1.658271 in 2017 and peaking at 1.709359 in 2019. This persistent rise underscores 

the ongoing challenges of balancing economic development with environmental 

sustainability. The high deforestation rates are primarily driven by the need for agricultural 

expansion, particularly in response to population growth and the increasing demand for food 

and fuelwood. Additionally, the expansion of urban areas and industrial zones continued to 

drive forest clearing. 

Overall, the trend in annual deforestation rates from 1990 to 2020 highlights the significant 

environmental impact of Uganda's economic development. The steady increase in 

deforestation rates is closely linked to the rise in CO2 emissions, as forest loss directly 

contributes to higher carbon dioxide levels in the atmosphere. These trends underscore the 

urgent need for sustainable land management practices and policies aimed at reducing 

deforestation and mitigating its impact on CO2 emissions. Efforts to promote reforestation, 



49 
 

improve agricultural practices, and implement stringent environmental regulations are 

essential to curbing these trends and achieving sustainable development in Uganda. 

 

 

1.1.2.3 Trend of Uganda’s manufacturing value added (1990-2020) 

 

Figure 4. 3: Trend of Uganda’s manufacturing value added (1990-2020) 
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Source: Author’s analysis of World Bank data 

The trend of Manufacturing Value Added (MVA) as a percentage of GDP in Uganda from 

1990 to 2020 shows significant fluctuations, with an overall upward trajectory, particularly 

noticeable from the mid-1990s onwards. This trend closely relates to the rise in CO2 

emissions over the same period, reflecting the industrial growth and its environmental impact. 

In the early 1990s, MVA remained relatively stable, starting at 5.341026% in 1990 and 

slightly increasing to 5.820887% by 1992. This period was marked by modest industrial 

activities as Uganda's economy was still recovering from past political and economic 

instability. CO2 emissions during this time were low, aligning with the limited industrial 

output. 
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From 1993 to 1999, there was a marked increase in MVA, rising from 5.598406% to 

8.893208%. This substantial growth can be attributed to economic reforms and liberalization 

policies implemented in the early 1990s, which attracted foreign investments and encouraged 

domestic industrial activities. The manufacturing sector expanded, leading to increased 

energy consumption and fossil fuel use, which in turn contributed to the rise in CO2 

emissions. This period of industrial growth saw emissions rise from 820.0 metric tons in 1993 

to 1320.0 metric tons in 1999. 

However, the year 2000 marked a notable dip in MVA to 7.098978%, which remained 

relatively low until 2004, with slight variations. This decline could be attributed to economic 

challenges, including the impact of global market fluctuations and internal inefficiencies 

within the manufacturing sector. Despite this dip, CO2 emissions continued to rise, albeit at a 

slower pace, reflecting ongoing industrial activities and urban expansion. 

The period from 2005 to 2008 saw a gradual recovery in MVA, increasing from 7.009316% 

to 7.306965%. This recovery coincided with renewed efforts to boost industrial output 

through policy support and infrastructure development. Consequently, CO2 emissions also 

saw a significant rise during this period, from 2230.0 metric tons in 2005 to 3180.0 metric 

tons in 2008, highlighting the direct correlation between manufacturing activities and 

emissions. 

A significant surge in MVA occurred between 2009 and 2011, with values skyrocketing from 

16.53152% in 2009 to 17.14687% in 2011. This sharp increase reflects substantial industrial 

expansion, possibly driven by large-scale investments in manufacturing and the 

implementation of industrial policies aimed at economic diversification. Correspondingly, 

CO2 emissions during this period rose dramatically from 3410.0 metric tons in 2009 to 

4160.0 metric tons in 2011, underscoring the environmental impact of intensified 

manufacturing activities. 

After peaking in 2011, MVA showed some variability, generally maintaining high levels but 

with slight declines, such as in 2013 and 2014 when it dropped to around 15.6%. These 

fluctuations indicate the manufacturing sector's responsiveness to economic conditions, 

including market demand and policy changes. Despite these variations, CO2 emissions 

continued to rise, reaching 4740.0 metric tons in 2014, reflecting sustained industrial activity 

and energy use. 
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In the latter part of the decade, MVA stabilized around 15-16%, with minor fluctuations, 

ending at 15.89301% in 2020. This stabilization indicates a mature phase of industrial 

development where the sector maintained its contribution to GDP despite broader economic 

challenges, including those posed by global economic conditions and internal structural 

issues. CO2 emissions mirrored this stabilization trend, peaking at 6130.0 metric tons in 2018 

before slightly declining to 5943.0 metric tons in 2019, showing the persistent environmental 

impact of manufacturing activities. 

Overall, the trend in MVA and CO2 emissions from 1990 to 2020 in Uganda highlights the 

direct link between industrial growth and environmental degradation. The significant 

increases in manufacturing activities, driven by economic reforms and investment, have 

substantially contributed to rising CO2 emissions, underscoring the need for sustainable 

industrial practices and policies to mitigate environmental impacts. This pattern is consistent 

with findings from other developing economies where industrial expansion often leads to 

increased emissions, necessitating balanced approaches to economic development and 

environmental conservation. 

 

4.1.2.4 Trend of Uganda’s total urban population (1990-2020) 

 

Figure 4. 4: Trend of Uganda’s total urban population (1990-2020) 
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The trend of urban population growth in Uganda from 1990 to 2020 shows a consistent and 

significant increase, which closely correlates with the rise in CO2 emissions over the same 

period. In 1990, Uganda’s urban population was 1,922,173, reflecting a relatively small urban 

sector in a predominantly rural country. The urban population steadily increased each year, 

reaching 2,471,224 by 1994. This early growth phase can be attributed to internal migration 

as people moved from rural areas to cities in search of better employment opportunities and 

living conditions. 

By the mid-1990s, the urban population continued to rise, reaching 2,969,697 in 1996 and 

3,311,698 by 1998. This period was characterized by increased economic activities and 

urbanization driven by government policies aimed at boosting industrial growth and 

infrastructure development. As a result, cities expanded rapidly, and with this expansion 

came an increase in energy consumption, transportation, and industrial activities, all 

contributing to higher CO2 emissions. This urban growth mirrored the rise in CO2 emissions 

from 1,070.0 metric tons in 1996 to 1,320.0 metric tons in 1999. 

The trend of urban population growth accelerated in the early 2000s, with the population 

reaching 4,697,306 by 2005. This significant increase is likely due to continued rural-to-

urban migration, driven by better economic prospects in urban areas, and the natural 

population growth within cities. During this period, CO2 emissions also saw a substantial 

rise, increasing from 1,330.0 metric tons in 2000 to 2,230.0 metric tons in 2005. The 

correlation between urban population growth and CO2 emissions is evident, as expanding 

urban areas required more energy for housing, transportation, and industrial activities, leading 

to higher fossil fuel consumption and emissions. 

In the late 2000s and early 2010s, the urban population continued its upward trajectory, 

reaching 6,661,208 by 2011 and 7,480,857 by 2013. This growth was accompanied by 

significant infrastructural development and an increase in manufacturing and service 

industries in urban areas. The corresponding rise in CO2 emissions from 2,600.0 metric tons 

in 2006 to 4,270.0 metric tons in 2013 highlights the impact of urbanization on environmental 

degradation. Increased vehicle usage, higher electricity demand, and industrial emissions 

contributed to this trend. 

The period from 2014 to 2020 saw an even more pronounced increase in the urban 

population, reaching 11,414,209 by 2020. This period was marked by intensified urban 

sprawl, the proliferation of informal settlements, and significant investments in urban 
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infrastructure. The rise in CO2 emissions during this time was equally significant, peaking at 

6,130.0 metric tons in 2018. The rapid urban population growth exacerbated environmental 

pressures, as more land was converted for urban use, leading to deforestation and higher 

emissions from increased transportation and energy use. 

Overall, the trend of urban population growth in Uganda from 1990 to 2020 is characterized 

by a consistent and substantial increase, driven by economic opportunities and internal 

migration. This growth has had a direct impact on CO2 emissions, with urbanization 

contributing to higher energy consumption, transportation needs, and industrial activities, all 

of which increase fossil fuel use and emissions. The findings align with trends observed in 

other developing countries, where rapid urbanization often leads to environmental challenges. 

Addressing these issues requires integrated urban planning, investments in sustainable 

infrastructure, and policies aimed at reducing the carbon footprint of growing urban areas. 

4.1.2.5 Trend of Uganda’s Gross Domestic Product per capita (1990-2020) 

 

Figure 4.5: Trend of GDP per capita in Uganda from 1990 to 2020 
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The trend of GDP per capita in Uganda from 1990 to 2020 depicted in figure 4.5 shows 

significant fluctuations, which closely correlate with the trends in CO2 emissions over the 

same period. In 1990, Uganda’s GDP per capita was relatively low at 244.7541 USD, 

reflecting the country's recovery phase from past economic and political turmoil. However, 
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there was a notable decline in the early 1990s, reaching a low of 151.9765 USD in 1992. This 

decline can be attributed to economic instability, poor infrastructure, and low industrial 

output, resulting in relatively stable but low CO2 emissions around this time, approximately 

820 metric tons. 

From the mid-1990s onwards, there was a gradual improvement in GDP per capita, rising to 

278.3166 USD in 1995 and 284.4568 USD in 1996. This period of economic recovery and 

growth was driven by economic reforms, liberalization policies, and increased foreign 

investment. The manufacturing and services sectors began to expand, leading to a rise in CO2 

emissions from 960 metric tons in 1995 to 1070 metric tons in 1996. This increase in 

emissions reflects the growth in industrial activities and energy consumption associated with 

economic development. 

In the late 1990s, GDP per capita continued to show a modest increase, peaking at 292.1695 

USD in 1998 before experiencing a slight dip to 257.6786 USD in 1999. This period saw 

fluctuating economic performance due to external economic shocks and domestic challenges. 

Despite these fluctuations, CO2 emissions continued to rise, reaching 1320 metric tons in 

1999. The ongoing industrialization and urbanization contributed to this trend, even though 

GDP per capita did not show consistent growth. 

The early 2000s witnessed further fluctuations in GDP per capita, with values ranging from 

257.8296 USD in 2000 to 241.8689 USD in 2002, reflecting economic instability and policy 

adjustments. However, from 2003 onwards, there was a more consistent upward trend in 

GDP per capita, reaching 292.4727 USD in 2004 and 330.6029 USD in 2005. This growth 

period was marked by increased economic stability, infrastructural development, and 

investment in key sectors. Correspondingly, CO2 emissions saw a significant increase, rising 

from 1350 metric tons in 2001 to 2230 metric tons in 2005, indicating the environmental 

impact of economic expansion. 

The late 2000s to early 2010s showed substantial growth in GDP per capita, peaking at 

799.9296 USD in 2009 and 824.7377 USD in 2010. This period was characterized by strong 

economic performance, driven by industrial growth, increased exports, and infrastructural 

improvements. The CO2 emissions during this time also surged dramatically, from 3180 

metric tons in 2008 to 3850 metric tons in 2010, highlighting the environmental costs of rapid 

economic growth. 
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Following a peak in GDP per capita in 2011 at 837.0959 USD, there was a slight decline to 

796.7111 USD in 2012, followed by a recovery to 819.7579 USD in 2013 and further growth 

to 897.5097 USD in 2014. This period saw continued industrialization and urbanization, 

contributing to rising CO2 emissions, which reached 4740 metric tons in 2014. The 

correlation between economic growth and emissions is evident, as increased industrial and 

economic activities drive higher energy consumption and fossil fuel use. 

The mid to late 2010s witnessed some variability in GDP per capita, with a notable decline in 

2016 to 753.6844 USD due to economic challenges but a subsequent recovery to 846.7672 

USD by 2020. CO2 emissions mirrored these trends, with a peak at 6130 metric tons in 2018 

before slightly declining to 5943 metric tons in 2019. This period reflects the balance 

between economic development and the environmental impacts of increased industrial and 

urban activities. 

Overall, the trend in GDP per capita in Uganda from 1990 to 2020 shows a clear connection 

with CO2 emissions, illustrating the environmental consequences of economic growth. As 

GDP per capita increased, driven by industrialization, urbanization, and infrastructural 

development, CO2 emissions also rose significantly. This trend underscores the need for 

sustainable development practices that balance economic growth with environmental 

conservation to mitigate the adverse impacts of industrial activities on the environment. 

 

4.2 Bivariate Analysis 

4.2.1 Correlation analysis 

In order to confirm whether the sample was reliable, correlation analysis was 

conducted to test the null hypothesis that the correlation between each variable and the 

dependent variable was Zero. The findings are presented in Table 4.2 

 

Table 4. 2:  Correlation Matrix of Uganda’s Inflation, broad money, Lending interest rate, 

Real Effective Exchange Rate and Final Consumption Expenditure 

  

 

 LNCO2E LNADR LNMVA LNUP LNGDPC 

LNCO2E  1.000000  0.984860  0.899132  0.987072  0.953005 

LNADR  0.984860  1.000000  0.895867  0.998719  0.932281 

LNMVA  0.899132  0.895867  1.000000  0.884769  0.959131 

LNUP  0.987072  0.998719  0.884769  1.000000  0.927928 

LNGDPC  0.953005  0.932281  0.959131  0.927928  1.000000 
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Source: Author’s analysis of World Bank data 

 

The correlation matrix in Table 4.2 The correlation matrix provides insights into the 

relationships between the natural logarithms of CO2 emissions (LNCO2E), annual 

deforestation rate (LNADR), manufacturing value added (LNMVA), urban population 

(LNUP), and GDP per capita (LNGDPC) in Uganda. Here is a detailed explanation of the 

results: 

LNCO2E (CO2 Emissions) and Other Variables: 

LNADR (Annual Deforestation Rate): The correlation coefficient between LNCO2E and 

LNADR is 0.984860, indicating a very strong positive relationship. This suggests that higher 

deforestation rates are closely associated with increased CO2 emissions. Deforestation 

contributes to CO2 emissions as trees, which act as carbon sinks, are removed, releasing 

stored carbon into the atmosphere. 

 

LNMVA (Manufacturing Value Added): The correlation between LNCO2E and LNMVA is 

0.899132, which indicates a strong positive relationship. This suggests that as the 

manufacturing sector grows, CO2 emissions also increase. Manufacturing activities typically 

involve energy consumption and industrial processes that produce CO2 emissions. 

 

LNUP (Urban Population): The correlation coefficient between LNCO2E and LNUP is 

0.987072, indicating a very strong positive relationship. As the urban population increases, 

CO2 emissions rise significantly, likely due to increased energy consumption, transportation, 

and industrial activities associated with urbanization. 

 

LNGDPC (GDP per Capita): The correlation between LNCO2E and LNGDPC is 0.953005, 

indicating a strong positive relationship. Economic growth, as measured by GDP per capita, 

tends to be accompanied by higher CO2 emissions due to greater industrial activities, energy 

use, and transportation. 

1. LNADR (Annual Deforestation Rate) and Other Variables: 

LNMVA (Manufacturing Value Added): The correlation between LNADR and LNMVA is 

0.895867, indicating a strong positive relationship. This relationship suggests that increased 

manufacturing activities lead to higher deforestation rates, possibly due to land clearance for 

industrial purposes. 
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LNUP (Urban Population): The correlation coefficient between LNADR and LNUP is 

0.998719, which shows an almost perfect positive correlation. This extremely high 

correlation implies that urban population growth is closely associated with increased 

deforestation. Urban expansion often results in the conversion of forested areas to urban land 

uses. 

 

LNGDPC (GDP per Capita): The correlation between LNADR and LNGDPC is 0.932281, 

indicating a strong positive relationship. Economic growth is associated with higher 

deforestation rates, likely due to increased demand for land and natural resources. 

2. LNMVA (Manufacturing Value Added) and Other Variables: 

LNUP (Urban Population): The correlation coefficient between LNMVA and LNUP is 

0.884769, indicating a strong positive relationship. This suggests that manufacturing growth 

is associated with urban population increases, as industrial activities attract people to urban 

areas for job opportunities. 

LNGDPC (GDP per Capita): The correlation between LNMVA and LNGDPC is 0.959131, 

indicating a very strong positive relationship. This suggests that as manufacturing value 

added increases, GDP per capita also rises, reflecting the importance of the manufacturing 

sector in driving economic growth. 

3. LNUP (Urban Population) and LNGDPC (GDP per Capita): 

The correlation coefficient between LNUP and LNGDPC is 0.927928, indicating a strong 

positive relationship. This suggests that as the urban population grows, GDP per capita 

increases. Urbanization is often associated with improved economic activities, better 

infrastructure, and greater access to services, which contribute to economic growth. 

4.3 Diagnostic tests 

 4.3.1 Test for normality 

Table 4.3 shows a summary of the results of the Jarque-Bera normality test.  

Table 4. 3: Results of the Test for Normality Before Taking First Difference 

 CO2E ADR MVA UP GDPC 

 Jarque-Bera  3.197411  2.049052  4.645877  2.803958  4.353215 

 Probability  0.202158  0.358966  0.097985  0.246109  0.113426 

      

 Observations  31  31  31  31  31 

Source: Author’s Analysis of World Bank data 1994-2020 
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The Jarque-Bera test results presented in Table 4.3 assess the normality of the distributions 

for CO2 emissions (CO2E), annual deforestation rate (ADR), manufacturing value added 

(MVA), urban population (UP), and GDP per capita (GDPC) before taking the first 

difference. The test statistics for CO2E, ADR, MVA, UP, and GDPC are 3.197411, 2.049052, 

4.645877, 2.803958, and 4.353215, respectively. The corresponding p-values are 0.202158 

for CO2E, 0.358966 for ADR, 0.097985 for MVA, 0.246109 for UP, and 0.113426 for GDPC. 

Given that all p-values are greater than the conventional significance levels (0.01, 0.05, and 

0.10), we fail to reject the null hypothesis of normality for each of the variables. This 

indicates that the data for CO2 emissions, annual deforestation rate, manufacturing value 

added, urban population, and GDP per capita are approximately normally distributed. Such 

normality in the distribution is crucial for the validity of many statistical analyses and 

econometric models, including those employed in this study. These findings suggest that the 

assumptions of normality hold for the variables in their levels, thus providing a solid 

foundation for subsequent econometric modelling and analysis. 

 

4.3.2 Test for Multicollinearity 

Table 4. 4: Variance Inflation Factor for the series 
    

    
 Coefficient Uncentered Centered 

Variable Variance VIF VIF 

    
    

ADR  0.008852  121.39503  3.291351 

MVA  790383.1  523.6334  7.754422 

UP  0.006375  127.5389  3.211892 

GDPc  1.60E-20  7.741347  2.186159 

C  413.3180  551.5664  NA 

 

Source: Author’s analysis of World Bank data 

 

The test for multicollinearity, as shown in Table 4.4, used the Variance Inflation Factor (VIF) 

to evaluate the correlation among the independent variables in the regression model. The 

centered VIF values for the Annual Deforestation Rate (ADR), Manufacturing Value Added 

(MVA), Urban Population (UP), and GDP per capita (GDPc) were 3.29, 7.75, 3.21, and 2.19, 

respectively, all of which fell below the commonly accepted threshold of 10. These results 

suggest that multicollinearity is not a significant issue within the model, indicating that the 

independent variables are not highly correlated to the extent that would distort the regression 

coefficients or inflate their standard errors. Conversely, the uncentered VIF values are 

substantially higher, particularly for ADR and UP, with values of 121.40 and 127.54, 
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respectively. This discrepancy is likely due to the inclusion of the constant term, which can 

artificially inflate VIF values when strong linear relationships exist between the independent 

variables and the intercept. Despite these elevated uncentered VIFs, the more relevant 

centered VIFs confirm that multicollinearity is within acceptable limits, thereby ensuring the 

reliability and interpretability of the regression model's results. 

 

4.3.3 Test Stationarity  

To avoid getting spurious results, it was necessary to determine the order of integration of the 

series prior to running the regression. With intercept, no trend, and adopting the null 

hypothesis as      𝛽     against the alternative that the data was stationary ( 1   𝛽   ), 

and critical value of 5%, the series were tested for stationarity using the Augmented Dickey-

Fuller (ADF) test with results as presented in Table 4.5. 

 

 

Table 4. 5: Summary of ADF Unit Root Test Statistics for the Individual series 

       

Series Lag I (0) ADF t & prob 

PProb. 

Critical 

55values @ 5% 

I (1) ADF-

t&Prob&atifference 

Critical values 

at 5% 

Order 

ointegration        

LNCO2E 2 -1.051183 (0.7332) -2.885249 

 

 

 

-3.838673(0.0034) -2.885249 I (1) 

LNADR 2 0.884511 (0.5911) -2.885450 -7.869466 (0.0000) -2.885654 I (1) 

LNMVA 2 -1.377785 (0.0613) -2.885249 -4.505707 (0.0003) -2.885249 I (1) 

LNUP 2 -0.199406 (0.9343) 

-10.07864 

 

 

-10.07864 

 

 

-2.885450 -3.468208 (0.0105) -2.885654 1 (1) 

LNGDPc 2 -1.330495 (0.6138) -2.885249 -3.555037 (0.0081) -2.885249 I (1) 

Source: Author’s analysis of World Bank 

The results of the Augmented Dickey-Fuller (ADF) test for stationarity, presented in Table 

4.5, reveal the integration order of the series under study: CO2 emissions (LNCO2E), annual 

deforestation rate (LNADR), manufacturing value added (LNMVA), urban population 

(LNUP), and GDP per capita (LNGDPc). For all variables, the null hypothesis of non-

stationarity (H0: βi=0) could not be rejected at levels (I(0)) since their ADF test statistics and 

associated p-values were greater than the critical values at the 5% significance level. 

Specifically, LNCO2E, LNADR, LNMVA, LNUP, and LNGDPc had ADF statistics of -

1.051183 (p = 0.7332), 0.884511 (p = 0.5911), -1.377785 (p = 0.0613), -0.199406 (p = 

0.9343), and -1.330495 (p = 0.6138), respectively, all failing to surpass the critical threshold 
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of -2.885249. However, after first differencing (I(1)), the series became stationary, as 

indicated by the significant ADF test statistics and p-values well below the 5% critical value. 

The first-differenced ADF statistics were -3.838673 (p = 0.0034) for LNCO2E, -7.869466 (p 

= 0.0000) for LNADR, -4.505707 (p = 0.0003) for LNMVA, -3.468208 (p = 0.0105) for 

LNUP, and -3.555037 (p = 0.0081) for LNGDPc, all exceeding their respective critical 

values. This indicates that each series is integrated of order one (I(1)), confirming their 

stationarity after first differencing and validating the suitability for further regression analysis 

to avoid spurious results. 

4.3.4 Test for Model Stability 

Figure 4. 5: Inverse Roots of AR Characteristic Polynomial Indicating Model Stability 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1 0 1

Inverse Roots of AR Characteristic Polynomial

 

 

Source: Author’s analysis of World Bank data 
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Figure 4.5 shows the AR roots graph of the vector error correction model (VECM) for the 

determinants of CO2 emissions in Uganda from 1990 to 2020 which visually represents the 

inverse roots of the characteristic polynomial. For the model to be considered stable, all the 

roots must lie within the unit circle, which is represented by the boundary of the red circle in 

the graph. The graph displays several points, each representing an inverse root, and all of 

them fall inside the unit circle. This indicates that the VECM is stable and appropriately 

specified. The stability of the VECM implies that the long-run equilibrium relationships 

among the variables—CO2 emissions, annual deforestation rate, manufacturing value added, 

urban population, and GDP per capita—are robust, and the system will return to equilibrium 

following a shock. These results are critical for ensuring the reliability of the VECM in 

providing accurate and meaningful insights into the dynamics and determinants of CO2 

emissions in Uganda over the study period. 

4.4 Estimation of the Econometric Model 

4.4.1 Optimal Lag Length Selection 

Before proceeding to conduct the Johansen cointegration test, it was imperative to identify 

the most appropriate lag length for the cointegration analysis. To achieve this, various lag 

selection criteria were employed, including the Akaike Information Criterion (AIC), Schwarz 

Bayesian Criterion (SBC), and Hannan–Quinn Criterion (HQC). Utilizing EViews 13, an 

unrestricted Vector Autoregression (VAR) model was estimated with potential lag intervals 

for the endogenous variables ranging from 1 to 4 lags. The optimal lag length was determined 

by analysing the VAR order lag selection table. The criterion with the lowest value, indicated 

by an asterisk, and the lag corresponding to the highest number of asterisks, was selected. 

Consequently, the AIC criterion was chosen, resulting in a lag length of 2. 

Table 4. 6: VAR Lag Order selection criteria (Endogenous variables: LNCO2E, LNADR, 

LNMVA, LNUP, LNGDPc and Exogenous variables: C) 

       
       

 Lag LogL LR FPE AIC SC HQ 

       
       

0  620.5151 NA   2.41e-11 -10.25858 -10.14244 -10.21142 

1  2193.628  2988.915  1.50e-22 -36.06047 -35.36359 -35.77746 

2  2410.273   393.5717*   6.18e-24*  -39.25455*  -37.97695*  -38.73571* 

3  2418.403  14.09211  8.23e-24 -38.97338 -37.11506 -38.21871 

4  2439.695  35.13137  8.84e-24 -38.91158 -36.47253 -37.92107 
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* Indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level), FPE: Final 

prediction error, AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn information 

criterion. 

Source: Author’s analysis of World Bank data 

 

4.4.2 The Johansen Cointegration Test 

Table 4. 7: Unrestricted Cointegration Rank Test (Trace and Maxi-Eigenvalue) 

        
        
Hypothesized  Trace 0.05 Prob.** Max-Eigen 0.05 Prob.** 

No. of CE(s) Eigenvalue Statistic Critical Value Critical Value Statistic Critical Value Critical Value 

        
        

None *  0.294895  89.65475  69.81889  0.0006  42.27838  33.87687  0.0040 

At most 1   0.187376  47.37637  47.85613  0.0554  25.10583  27.58434  0.1005 

At most 2  0.122639  22.27054  29.79707  0.2837  15.83127  21.13162  0.2349 

At most 3  0.045971  6.439267  15.49471  0.6436  5.694390  14.26460  0.6527 

At most 4  0.006137  0.744877  3.841465  0.3881  0.744877  3.841465  0.3881 

        
        
Trace test indicates 1 cointegrating equation(s) at the 0.05 level. Max-eigenvalue test indicates 1 cointegrating equation(s) at 

the 0.05 level.  * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values.  

Source: Author analysis of World Bank Data 
 

 

The results of the Johansen Cointegration Test, as presented in Table 4.7, reveal critical 

insights into the long-run relationships among the variables under study. The test employs 

both Trace and Max-Eigenvalue statistics to assess the number of cointegrating equations. 

According to the Trace test, there is evidence of one cointegrating equation at the 5% 

significance level, as indicated by the Trace statistic of 89.65475, which exceeds the critical 

value of 69.81889 with a p-value of 0.0006. Similarly, the Max-Eigenvalue test confirms the 

presence of one cointegrating equation, with a Max-Eigen statistic of 42.27838 surpassing the 

critical value of 33.87687 and a p-value of 0.0040. These findings denote the rejection of the 

null hypothesis of no cointegration for the "None" hypothesis, suggesting a stable long-term 

equilibrium relationship among the variables. However, for higher hypothesized numbers of 

cointegrating equations (At most 1, At most 2, At most 3, and At most 4), the test statistics do 

not exceed the corresponding critical values, indicating no additional cointegrating 

relationships at these levels. Thus, the Johansen Cointegration Test robustly supports the 

existence of one significant cointegrating vector, affirming the long-term interdependencies 

between CO2 emissions, annual deforestation rate, manufacturing value added, urban 

population, and GDP per capita in Uganda from 1990 to 2020. 

4.4.3 The Normalized Coefficients 

Table 4. 8: Normalized Cointegrating Equation 

1 Cointegrating Equation    
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Log-Likelihood: 2415.665    

      
      
Normalized cointegrating coefficients (standard error in parentheses)  

LNCO2E LNADR LNMVA LNUP LNGDPC C 

 1.000000  19.30448 0.333125 -5.219857 -0.828100 70.21106 

  (3.28493) (0.13329)  (0.73370)  (0.10847)  

 [5.87669] [2.49933] [-7.11444] [-7.63418]  

      
      
** Denotes significance at 5% 

Source: Author analysis of World Bank Data 

The cointegrating equation describes the long-term relationship among the variables, 

indicating how deviations from this equilibrium are corrected over time. The cointegrating 

equation can be expressed as: 

LNCO2E=−19.30448⋅LNADR+0.333125⋅LNMVA−5.219857⋅LNUP−0.828100⋅LNGDPC+7

0.21106 

4.4.3.1 The effect of the annual deforestation rate (LNADR) on CO2 emissions in 

Uganda 

The coefficient for LNADR (19.30448), with a standard error of 3.28493 and a t-statistic of 

5.87669, is expected and suggests a significant positive relationship between LNADR and 

LNCO2E, significant at the 5% level. This indicates that a 1% increase in the annual 

deforestation rate (LNADR) is associated with a 19.30% increase in CO2 emissions in the 

long term, highlighting the substantial impact of deforestation on CO2 emissions. The 

statistical significance of this relationship is confirmed by a t-statistic of 5.87669, indicating a 

strong correlation. 

4.4.3.2 The effect of Manufacturing Value Added on CO2 emissions in Uganda 

In contrast, the coefficient for Manufacturing Value Added (MVA) is 0.333125, with a 

standard error of 0.133125 and a t-statistic of 2.49933. This indicates that a 1% increase in 

manufacturing value added corresponds to a 0.33% increase in CO2 emissions. The positive 

relationship between MVA and CO2 emissions is statistically significant, as evidenced by the 

t-statistic exceeding the critical value at the 5% significance level. 

4.4.3.3 The effect of Urban Population (LNUP) on CO2 emissions in Uganda 

The coefficient for LNUP is -5.219857, with a standard error of 0.73370 and a t-statistic of -

7.63418. This significant negative relationship (at the 5% level) indicates that a 1% increase 

in urban population is associated with a 5.22% decrease in CO2 emissions. This result 

suggests that urban population growth, perhaps due to increased efficiency or environmental 

policies in urban areas, is inversely related to CO2 emissions 
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4.4.3.4 The effect of Gross Domestic Product per capita (LNGDPc) on CO2 emissions in 

Uganda 

The coefficient for LNGDPc is -0.828100, with a standard error of 0.10847 and a t-statistic of 

-7.11444. This coefficient is statistically significant at the 5% level, implying that a 1% 

increase in GDP per capita corresponds to a 0.83% decrease in CO2 emissions. This finding 

suggests that higher GDP per capita is associated with lower CO2 emissions, potentially 

reflecting the adoption of cleaner technologies or more efficient production processes as 

income levels rise. 

4.4.4 The estimated short run (Error Correction) Model  

Table 4.8 below presents the results from the estimated short run (Error Correction) Model. 

This table highlights the short-term dynamics between the dependent and independent 

variables, indicating how quickly deviations from the long-term equilibrium are corrected. 

The results provide insights into the immediate effects of changes in broad money supply, 

lending interest rates, real effective exchange rate, and final consumption expenditure on 

inflation in Uganda. 

Table 4. 9: Error correction estimates (Appendix 1.) 

 

 

The short-run (error correction) model estimates presented in Appendix 1 depict the short-

term dynamics and adjustments ofCO2 emissions (LNCO2E) the annual deforestation rate 

(LNADR), manufacturing value added (LNMVA), Urban population (LNUP), and GDP per 

capita (LNGDPc) in Uganda, in response to deviations from long-term equilibrium. The error 

correction term (COINTEQ1) reflects the speed at which the variables return to equilibrium 

after a shock. 

4.4.4.1 The error correction term (COINTEQ1) 

 The error correction term (COINTEQ1) shows that deviations from the long-term 

equilibrium are corrected over time. Specifically, the coefficient for the CO2 emissions 

equation (-0.056730) suggests that 5.67% of any disequilibrium in the previous period's CO2 

emissions is corrected in the current period. This negative and significant value (t-stat = -

2.91632) indicates a moderate speed of adjustment towards the long-run equilibrium. 

Similarly, the negative coefficients in the equations for annual deforestation rate (-0.004461, 

t-stat = -2.17016), manufacturing value added (-0.103869. t-stat=-2.54372) imply correction 

speeds of 0.45% and 10.4% per period, respectively. The coefficients for urban population 
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and GDP per capita are not statistically significant, suggesting that these variables do not 

exhibit a significant short-term adjustment towards long-term equilibrium.  

4.4.4.2 The short run effect of annual deforestation rate on CO2 emissions in Uganda 

For the annual deforestation rate (D(LNADR)), the first lag (D(LNADR(-1))) shows a 

positive effect of approximately 35.68%, though this result is not statistically significant, 

suggesting that recent increases in deforestation might have a moderate but uncertain impact 

on CO2 emissions. The second lag (D(LNADR(-2))) also displays a positive effect of around 

57.30%, but again, this is not statistically significant. However, the third lag (D(LNADR(-

3))) reveals a significantly higher positive impact of about 119.70% on CO2 emissions, 

indicating that deforestation from three years prior has a substantial and statistically 

significant effect, reflecting the cumulative and escalating nature of deforestation's impact 

over time. 

4.4.4.3 The short run effect of Manufacturing value added on CO2 emissions in Uganda  

Regarding Manufacturing Value Added (D(LNMVA)), the first lag (D(LNMVA(-1))) shows a 

modest and statistically insignificant effect of approximately -2.86%, suggesting that recent 

changes in manufacturing value added might have a slight and uncertain impact on CO2 

emissions. The second lag (D(LNMVA(-2))) presents a minimal and statistically insignificant 

effect of about 0.32%, indicating negligible immediate impact. The third lag (D(LNMVA(-

3))) also shows a minor and statistically insignificant effect of about 0.53%, further 

reinforcing the limited short-term influence of manufacturing value added on CO2 emissions. 

4.4.4.4 The effect of Urban population on CO2 emissions in Uganda 

For the urban population (D(LNUP)), the first lag (D(LNUP(-1))) exhibits a significant 

positive effect of approximately 208.37%, meaning that an increase in urban population from 

the previous quarter has a considerable impact on CO2 emissions. The second lag (D(LNUP(-

2))) displays a positive but statistically insignificant effect of about 98.62%, indicating that 

the impact of urban population growth might persist over time but with uncertain magnitude. 

The third lag (D(LNUP(-3))) shows a significant positive effect of approximately 251.90%, 

emphasizing the strong influence of urban population growth over a longer period on CO2 

emissions. 

4.4.4.5 The effect of GDP per capita on CO2 emissions in Uganda. 

Finally, for GDP per capita (D(LNGDPC)), the first lag (D(LNGDPC(-1))) demonstrates a 

statistically significant positive effect of about 1.75%, suggesting that recent increases in 

GDP per capita lead to a slight rise in CO2 emissions. The second lag (D(LNGDPC(-2))) has 



66 
 

a minimal and statistically insignificant effect of about -3.23%, indicating a potential but 

uncertain decrease in emissions. The third lag (D(LNGDPC(-3))) shows a small and 

statistically insignificant positive effect of approximately -3.10%, further reflecting the 

limited impact of GDP per capita on CO2 emissions in the short run. 

4.4.4.5 Intercept of the Short run model 

The intercept term of the short-run error correction model provides insights into the baseline 

effects on CO2 emissions when all its determinants studied in the current study are held 

constant. The intercept for CO2 emissions is -0.0834, though it is statistically insignificant at 

conventional levels, indicating that the baseline effect on CO2 emissions is not robustly 

supported by the data. This result suggests that the changes in CO2 emissions are more 

significantly influenced by the included variables and their lags rather than by a constant 

baseline effect. Conversely, this non-significance implies that other factors or variables might 

be more influential in determining CO2 emissions, rather than a constant baseline effect. 

4.4.4.6 Short run model diagnostics 

The model diagnostics reveal several important aspects of the model's performance. The R-

squared values range from 0.506 for the annual deforestation rate to 0.727 for GDP per 

capita, indicating a moderate to strong fit of the model to the data, with the highest value 

observed for GDP per capita. The adjusted R-squared values are slightly lower, ranging from 

0.429 for the annual deforestation rate to 0.684 for GDP per capita, but still reflect a 

reasonable fit, particularly for the CO2 emissions equation, which has an adjusted R-squared 

of 0.588. The sum of squared residuals is low across the models, with values of 0.0184 for 

CO2 emissions, 0.0002 for annual deforestation rate, 0.0812 for manufacturing value added, 

0.00001 for urban population, and 0.0396 for GDP per capita, suggesting that the model fits 

the data well. The standard errors of the equations range from 0.0014 for the annual 

deforestation rate to 0.0281 for manufacturing value added, indicating precise estimates. The 

F-statistics are significant for most models, with values of 11.621 for CO2 emissions, 6.593 

for annual deforestation rate, 9.456 for manufacturing value added, 11.121 for urban 

population, and 17.104 for GDP per capita, highlighting that the models overall are 

statistically significant and provide a good explanation of the variability in the dependent 

variables. These diagnostics suggest that the models are robust and adequately capture the 

relationships between the variables and CO2 emissions, despite some individual variable 

coefficients and intercepts being statistically insignificant. 
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4.4.5 Residual diagnostic Tests 

 

 

 

Table 4. 10: Summary of results from residual diagnostic tests for serial correlation, 

normality and heteroskedasticy 

      
      
RESIDUAL TEST STATISTIC LAG VALUE DF PROBABILITY 

      
      
VEC LM. Serial correlation LRE*stat 2 34.36092 25 0.1209 

  Rao-F-stat 2  1.531397 (25, 34.9)  0.1209  

 LRE*stat 3 36.07600 25 0.0871 

  Rao-F-stat 3 1.641595 (25.34.9) 0.0871 

 

Normality Jarque-Bera  2.685890 2 0.2611 

    1.177026  2  0.5552 

   2.277924 2 0.1312 

   4.097551 2 0.1289 

   2.752949 2 0.2525 

      

Heteroskedasticity Joint Chi-sq  510.9139  480  0.1590 

      

      
      

Source: Author’s analysis of World Bank data 

The results from the residual diagnostic tests in Table 4.10 indicate that the vector error 

correction (VEC) model demonstrates robust properties essential for valid inference. These 

tests included evaluations for serial correlation, normality, and heteroskedasticity in the 

residuals. 

4.4.5.1 Serial Correlation 

The results from the serial correlation tests indicate that the vector error correction (VEC) 

model did not exhibit significant evidence of serial correlation in the residuals, given that the 

corresponding probability values were above the conventional significance level of 0.05 

suggesting that the null hypothesis (which states that there is no serial correlation) could not 

be rejected. Specifically, the LRE stat for lag 2 yielded a probability value of 0.1209, and the 

Rao-F statistic for lag 2 also showed a probability of 0.1209. For lag 3, the LRE stat. 

produced a probability value of 0.0871, while the Rao-F statistic for lag 3 reported a 

probability of 0.0871. These results suggested that the null hypothesis of no serial correlation 

could not be rejected, supporting the assumption that the residuals were likely serially 

uncorrelated. 
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4.4.5.2 Normality 

The Jarque-Bera test was used to assess whether the residuals followed a normal distribution. 

Multiple Jarque-Bera statistics were reported, each with different values and associated 

degrees of freedom, but all probabilities exceeded the 0.05 threshold. Specifically, the 

probabilities for components 1, 2, 3, 4 and 5 of the tests were 0.2611, 0.5552, 0.1312, 0.1289, 

and 0.2525, all exceeding the conventional significance level of 0.05. Consequently, these 

findings indicated that the null hypothesis of normality could not be rejected, suggesting that 

the residuals were approximately normally distributed, an important condition for the validity 

of the model's inferences.  

4.4.5.3 Heteroskedasticity 

The White heteroskedasticity test (excluding cross terms) was used to assess if the variance 

of the residuals remained consistent across observations. As shown in Table 4.10, the joint 

Chi-squared test for heteroskedasticity revealed a test statistic of 510.9139 with a probability 

of 0.1590. This probability value suggested that the null hypothesis of homoskedasticity, or 

constant variance of the residuals, could not be rejected. As a result, the analysis indicated 

that the residuals did not exhibit significant heteroskedasticity, which is favourable for the 

assumptions underlying the model and enhances the reliability of the results obtained from 

the analysis. 

The above results from residual diagnostic tests show that the Vector Error Correction Model 

(VECM) was an effective tool for analysing the long-term and short-term dynamics of CO2 

emissions and their determinants in Uganda. Consequently, the findings derived from this 

model are credible and provide a solid foundation for understanding the relationships and 

impacts of the studied variables. 

4.5 Discussion of Results 

4.5.1 Discussion of results on the effect of ADR on CO2 emissions in Uganda 

 The results indicating a significant positive relationship between the annual deforestation 

rate (LNADR) and CO2 emissions (LNCO2E) in Uganda, with a coefficient of 19.30448 and 

a t-statistic of 5.87669, align well with the findings in the broader empirical literature. This 

coefficient suggests that a 1% increase in the annual deforestation rate is associated with a 

substantial 19.30% increase in CO2 emissions in the long term, highlighting the severe 

impact of deforestation on environmental sustainability. The coefficient of 19.30448, with a t-

statistic of 5.87669, suggests that deforestation considerably elevates CO2 emissions, which 

is consistent with the global understanding that forests act as crucial carbon sinks. The 
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extensive deforestation in Uganda, as evidenced by the studies, directly diminishes the 

country's ability to sequester carbon, thereby exacerbating CO2 emissions. This relationship 

is supported by the significant positive elasticity indicating that a 1% increase in 

deforestation correlates with a 19.30% increase in CO2 emissions in the long run, 

highlighting the critical need for effective forest management policies. The statistical 

significance of this relationship, confirmed by the t-statistic, underscores the robust nature of 

this correlation and the critical importance of addressing deforestation to mitigate CO2 

emissions. 

Empirical studies from various regions corroborate these findings. For instance, Kocoglu et 

al. (2024) demonstrated the potential of forests to mitigate CO2 emissions globally, 

emphasizing the importance of forest conservation in environmental strategies. Similarly, 

Raihan et al. (2022a) and Begum et al. (2020) found significant adverse impacts of 

deforestation on CO2 emissions in Malaysia, highlighting the need for sustainable land 

management practices. In East Asia, Mighri et al. (2022) showed that strategic forest 

investments could effectively reduce CO2 emissions, a notion supported by Selvanathan et al. 

(2023) in the context of OECD countries, despite some mixed findings. Additionally, studies 

by Sakala et al. (2023) in SSA and local research by Naturinda et al. (2019) and Olupot et al. 

(2017) in Uganda emphasize the significant carbon sequestration role of forests and the 

detrimental effects of deforestation on CO2 emissions. These studies collectively underline 

the necessity for comprehensive forest conservation policies to address the substantial impact 

of deforestation on CO2 emissions and support long-term environmental sustainability. 

 

4.5.2 Discussion of results on the effect of MVA on CO2 emissions in Uganda 

The empirical analysis demonstrates a statistically significant positive relationship between 

Manufacturing Value Added (MVA) and CO2 emissions in Uganda, as evidenced by a 

coefficient of 0.333125, with a standard error of 0.133125 and a t-statistic of 2.49933. This 

implies that a 1% increase in MVA corresponds to a 0.33% increase in CO2 emissions, 

highlighting the environmental impact of industrial growth. The significance of the t-statistic 

at the 5% level underscores the robustness of this relationship, suggesting that manufacturing 

activities significantly contribute to the increase in CO2 emissions. 

This observed relationship is consistent with findings from broader empirical literature on the 

effects of industrialization on CO2 emissions. In OECD countries, despite advancements in 
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technology and stringent environmental regulations, industrial activities remain a primary 

source of CO2 emissions, as highlighted by Wang et al. (2021). The ASEAN region, 

experiencing rapid industrialization, faces significant environmental challenges due to 

reliance on fossil fuels and lack of stringent emission control policies, as noted by Zafar et al. 

(2020) and Hariani et al. (2022). Similarly, studies in Sub-Saharan Africa, including research 

by Salahuddin et al. (2019), indicate that industrialization, though crucial for economic 

development, often leads to increased CO2 emissions due to outdated industrial processes 

and technologies. 

In Uganda, the findings align with those of Appiah et al. (2019) and Okillong and Luwedde 

(2023), who reported a positive and significant effect of industrialization on CO2 emissions. 

These studies emphasize that industrial growth, while essential for economic development, 

exacerbates environmental degradation through increased carbon emissions. The increase in 

CO2 emissions associated with MVA reflects the broader trend observed in regions 

undergoing industrial expansion without corresponding advancements in energy efficiency 

and sustainable practices. Therefore, the observed positive relationship between MVA and 

CO2 emissions in Uganda can be attributed to the energy-intensive nature of manufacturing 

processes and the prevalent use of fossil fuels, highlighting the urgent need for policies 

promoting cleaner technologies and sustainable industrial practices. 

4.5.3 Discussion Of findings on the effect of Urban population on CO2 emission in 

Uganda 

 

The empirical analysis reveals a significant negative relationship between the urban 

population (LNUP) and CO2 emissions (LNCO2E) in Uganda, as indicated by a coefficient 

of -5.219857, with a standard error of 0.73370 and a t-statistic of -7.63418. This suggests that 

a 1% increase in the urban population corresponds to a 5.22% decrease in CO2 emissions. 

This statistically significant finding at the 5% level indicates that urban population growth in 

Uganda is associated with reduced CO2 emissions. This counterintuitive result can be 

attributed to several factors including increased urban hydro-electricity coverage, the growth 

in the uptake of solar power technologies, and effective government energy-saving 

campaigns. 

One primary reason for this negative relationship is the significant increase in urban hydro-

electricity coverage facilitated by UMEME, Uganda's primary electricity distribution 
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company. Over the years, UMEME has expanded its customer base from 280,000 to 1.2 

million, marking a growth rate in connections of 138% as of 2018. This expansion has 

significantly reduced the reliance on traditional biomass fuels such as charcoal and firewood 

in urban and peri-urban areas. The shift from biomass to hydro-electricity, a cleaner energy 

source, contributes to the reduction in CO2 emissions, providing a  plausible explanation for 

the observed decrease in emissions despite the growing urban population. 

Additionally, the growth in the uptake of solar power technologies and the government's 

aggressive energy-saving campaigns have further reduced the demand for charcoal and 

firewood. The Government of Uganda has recently distributed 10,000 gas cylinders and 

burners to households in Kampala, Wakiso, and Mukono, and continues to subsidize and 

distribute cylinders, cooking gas, and burners through partners like Total Energies, Starbex 

International, and Vivo Energy. These initiatives have significantly lessened the pressure on 

biomass fuel demand in urban areas, thus contributing to lower CO2 emissions. Furthermore, 

the launch of the 'Fumbalive' campaign in 2020 by the Uganda Ministry of Energy and 

Mineral Development, in collaboration with the Global Alliance for Clean Cookstoves and 

the Uganda National Alliance of Clean Cookstoves (UNACC), has encouraged the adoption 

of improved cookstoves. This campaign promotes energy-saving cooking practices, further 

supporting the observed negative effect of urban population growth on CO2 emissions. 

The current findings align with the Environmental Kuznets Curve (EKC) hypothesis, as 

suggested by Liu and Bae (2018), which posits that emissions rise during the early stages of 

urbanization but decline as urban areas mature and adopt sustainable practices. This pattern is 

reflected in Uganda's urban centers, where increased efficiencies and the adoption of cleaner 

technologies have led to reduced emissions. Conversely, the results contrast with the findings 

of Wang et al. (2014) and Fragkias et al. (2017), who identified a direct correlation between 

urbanization and increased CO2 emissions due to higher energy consumption and 

transportation needs. However, the context-dependent nature of the relationship, as discussed 

by Xu and Lin (2015) and Zheng et al. (2023), underscores the importance of specific urban 

policies and technological advancements in shaping the environmental outcomes of 

urbanization. 

Overall, the significant negative impact of urban population growth on CO2 emissions in 

Uganda highlights the crucial role of energy policy, technological adoption, and urban 

planning in mitigating environmental impacts. The empirical literature supports these 
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findings, emphasizing the importance of sustainable urban development practices in 

achieving environmental sustainability amid urban growth. 

4.5.4 Discussion of findings on the effect of Gross Domestic Product per capita on CO2 

emissions in Uganda 

The empirical analysis reveals a significant negative relationship between GDP per capita 

(LNGDPc) and CO2 emissions (LNCO2E) in Uganda, indicated by a coefficient of -

0.828100, a standard error of 0.10847, and a t-statistic of -7.11444. This suggests that a 1% 

increase in GDP per capita corresponds to a 0.83% decrease in CO2 emissions, with the result 

being statistically significant at the 5% level. This finding implies that as GDP per capita 

increases, CO2 emissions decrease, potentially due to the adoption of cleaner technologies 

and more efficient production processes as income levels rise. 

This observed negative relationship aligns with the Environmental Kuznets Curve (EKC) 

hypothesis, which posits that as an economy grows, CO2 emissions initially increase but 

eventually decrease as the economy transitions to more sustainable practices. This pattern has 

been documented in OECD countries, where technological advancements and stringent 

environmental policies have led to a decoupling of economic growth from CO2 emissions 

(Le Quéré et al., 2020). The decline in emissions in these countries is attributed to improved 

energy efficiency and a shift towards service-based economies (Kutlu and Örün, 2023). 

Similarly, Uganda may be experiencing the early stages of this transition, where increased 

income levels facilitate investments in cleaner technologies and more efficient energy use, 

thus reducing CO2 emissions. 

Contrastingly, the ASEAN region presents a different scenario where rapid industrialization 

and urbanization have significantly increased CO2 emissions, as economic growth in these 

countries is closely tied to energy consumption patterns and reliance on fossil fuels (Batool et 

al., 2022). This suggests that ASEAN countries are still in the upward phase of the EKC, 

where economic growth exacerbates environmental degradation due to insufficient 

environmental regulations. In Sub-Saharan Africa, including East Africa, the relationship 

between GDP per capita and CO2 emissions is less pronounced due to lower levels of 

industrialization and economic activity. However, as these regions develop, the potential for 

increased emissions is significant if development follows the same carbon-intensive paths 

seen elsewhere (Gebrechorkos et al., 2023; Namahoro et al., 2021). 

In Uganda specifically, the relationship between GDP per capita and CO2 emissions reflects 

broader regional trends. While current emissions are relatively low due to the predominantly 
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agrarian economy, recent developments in manufacturing and services sectors have begun to 

impact emissions (Kiggundu et al., 2022). However, the counterintuitive finding of a negative 

relationship in the current study, compared to previous studies such as Otim et al. 

(2022),Appiah et al. (2019) may be due to differences in sample periods and the regressors 

included. Otim et al. (2022) used a sample period from 1986 to 2018 and considered only two 

predictors (energy consumption and GDP), whereas the current study analysed the 

determinants of CO2 emissions for the period from 1990 to 2020, focusing on four 

predictors: the annual deforestation rate, manufacturing value added, urban population, and 

GDP per capita. On the other hand,  Appiah et al. (2019) used 1990-2014 as the sample 

period and included energy intensity as one of the predictor variables unlike the current study. 

Additionally, Appiah et al. (2019) also used industrial value added as a proxy for 

indusrialisation whereas the current study used manufacturing value added to proxy 

indusrialisation. More over while Appiah et al. (2019) used the autoregressive distributed lag 

approach to model CO2 emissions, the current study employed the vector error correction 

model.Thus methodological, sample period, variable differences may capture additional 

dynamics that influence CO2 emissions, leading to the observed negative relationship. 

Overall, the significant negative impact of GDP per capita on CO2 emissions in Uganda 

underscores the potential for sustainable development practices to decouple economic growth 

from environmental degradation. The empirical literature supports these findings, 

emphasizing the importance of technological advancements and effective environmental 

policies in achieving sustainable economic growth. 
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CHAPTER FIVE 

SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

 This chapter summarises the findings, conclusions, and recommendations from the analyses 

conducted in the preceding chapters. The study employed the Vector Error Correction Model 

(VECM) to examine the determinants of CO2 emissions in Uganda, with a focus on data 

spanning from 1990 to 2020. By analysing the effect of annual deforestation rate, 

manufacturing value added, urban population and domestic product per capita on CO2 

emissions, the study aimed to uncover the underlying dynamics influencing price levels in 

Uganda. This chapter synthesizes the key results derived from the empirical investigation, 

draws overarching conclusions based on the evidence, and offers practical recommendations 

for policymakers and stakeholders. The insights gained from this study are intended to 

contribute to a deeper understanding of inflationary trends and to inform strategies for 

managing inflation in Uganda effectively. 

5.2 Summary of Findings  

 The main objective of this study was to examine the determinants of CO2 emissions in 

Uganda. This objective was met by testing the following null hypotheses: 

H0-1. There is no significant effect of annual deforestation rate on CO2 emissions in Uganda. 

H0-2. There is no significant effect of manufacturing value added on CO2 emissions in 

Uganda. 

H0-3. There is no significant effect of urban population on CO2 emissions in Uganda. 

H0-4. There is no significant effect of DGP per capita on CO2 emissions in Uganda 

 The findings are summarized as follows: 

5.2.1The Effect of the Annual Deforestation Rate (LNADR) on CO2 Emissions in 

Uganda 

The analysis indicated a significant positive relationship between the annual deforestation 

rate and CO2 emissions in Uganda. This relationship suggests that increases in deforestation 

are strongly associated with increases in CO2 emissions. The robustness of this finding was 

confirmed by the statistical significance of the relationship, highlighting the substantial 

impact of deforestation on the country's carbon emissions. 
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5.2.2The Effect of Manufacturing Value Added on CO2 Emissions in Uganda: 

The study revealed a significant positive relationship between manufacturing value added and 

CO2 emissions. This finding indicates that as the manufacturing sector expands, there is a 

corresponding increase in CO2 emissions. The statistical significance of this relationship 

underscores the environmental impact of industrial growth in Uganda, suggesting that 

manufacturing activities are a considerable source of carbon emissions. 

5.2.3 The Effect of Urban Population (LNUP) on CO2 Emissions in Uganda 

Contrary to apriori expectations, the analysis found a significant negative relationship 

between urban population growth and CO2 emissions. This result implies that increases in the 

urban population are associated with decreases in CO2 emissions. This inverse relationship 

may be attributed to greater efficiency or effective environmental policies in urban areas, 

which mitigate the impact of population growth on emissions. 

5.2.4 The Effect of Gross Domestic Product per Capita (LNGDPc) on CO2 Emissions in 

Uganda 

The findings indicate a significant negative relationship between GDP per capita and CO2 

emissions. This suggests that as GDP per capita increases, CO2 emissions decrease, 

potentially due to the adoption of cleaner technologies and more efficient production 

processes as income levels rise. The statistical significance of this relationship highlights the 

potential for economic growth to be coupled with environmental sustainability in Uganda. 

5.3 Conclusions of the study 

5.3.1 Conclusion on the Effect of annua deforestation rate on CO2 emissions in Uganda. 

The analysis demonstrated a significant positive relationship between the annual 

deforestation rate and CO2 emissions in Uganda. This finding underscores the profound 

impact deforestation has on increasing CO2 emissions, corroborating the global 

understanding that forests serve as vital carbon sinks. The substantial increase in CO2 

emissions associated with a rise in deforestation rates highlights the critical need for robust 

forest management and conservation strategies in Uganda. These results are consistent with 

theoretical and empirical evidence from various regions, reinforcing the importance of 

preserving forest cover to mitigate environmental degradation and support long-term 

sustainability. 
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5.3.2 Conclusion on the Effect of Manufacturing Value Added on CO2 Emissions in 

Uganda 

The analysis reveals a significant positive relationship between Manufacturing Value Added 

(MVA) and CO2 emissions in Uganda, indicating that an increase in MVA results in higher 

CO2 emissions. This finding highlights the environmental impact of industrial growth, 

consistent with global and regional trends. In various contexts, including OECD countries, 

ASEAN, and Sub-Saharan Africa, industrial activities contribute significantly to CO2 

emissions due to reliance on fossil fuels and outdated technologies. In Uganda, this aligns 

with previous studies that emphasize the dual role of industrialization in economic 

development and environmental degradation. The results underscore the need for Uganda to 

adopt cleaner technologies and sustainable industrial practices to address the adverse effects 

of industrial growth on CO2 emissions. 

5.3.3 Conclusion on the Effect of urban population on CO2 Emissions in Uganda 

The findings of this analysis underscore a notable negative relationship between urban 

population growth and CO2 emissions in Uganda, suggesting that increases in urban dwellers 

can lead to a decrease in emissions. This counterintuitive result can largely be attributed to 

the expanded access to clean energy sources, particularly hydro-electricity, as well as the 

increased uptake of solar power technologies and government initiatives promoting energy 

efficiency. These factors collectively reduce reliance on traditional biomass fuels, 

contributing to lower emissions. Additionally, the study aligns with the Environmental 

Kuznets Curve hypothesis, indicating that while initial urbanization might lead to increased 

emissions, sustainable practices eventually prevail as urban areas mature. Overall, this 

evidence highlights the significance of effective energy policies, technological advancements, 

and strategic urban planning in shaping more sustainable environmental outcomes as Uganda 

continues to urbanize. 

5.3.4 Conclusion on the Effect of GDP per capita on CO2 Emissions in Uganda 

In summary, the analysis demonstrates a noteworthy negative relationship between GDP per 

capita and CO2 emissions in Uganda, suggesting that as economic conditions improve, 

emissions tend to decrease. This pattern aligns with the Environmental Kuznets Curve (EKC) 

hypothesis, indicating that Uganda may be at a transitional stage where economic growth is 

increasingly coupled with cleaner technologies and sustainable practices. Unlike regions such 

as ASEAN, which are experiencing increased emissions due to rapid industrialization, 

Uganda's relatively low emissions reflect its agrarian economy and emerging manufacturing 
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sector. The findings indicate that growth is not simply an avenue for increased environmental 

degradation but can also present opportunities for implementing more effective 

environmental strategies. Overall, Uganda's experience illustrates the potential for achieving 

sustainable development through the integration of economic growth with environmental 

considerations, emphasizing the need for continued investment in cleaner technologies and 

sustainable practices as GDP per capita rises. 

5.4 Limitations of the study 

Despite the valuable insights provided by this research on CO2 emissions and their 

determinants in Uganda from 1990 to 2020, several limitations warrant consideration. 

A primary limitation is the restricted availability of time series data, which necessitated a 30-

year timeframe for analysis. This brevity can significantly impact the robustness of time 

series studies, as shorter periods may limit the sample size and reduce the generalizability of 

findings. The limited timeframe can also hinder the ability to effectively test for unit roots, 

making it challenging to reject the null hypothesis when it is indeed false (Weigend, 2018). 

To counteract these limitations, the study enhanced the dataset by converting annual data into 

quarterly intervals, thereby increasing the sample size and providing a more granular 

analysis. 

Another limitation lies in the temporal scope of the study, which spans from 1990 to 2020. 

While this period offers a substantial dataset, it may not adequately reflect the most recent 

economic shifts or historical trends. The dynamics of economic conditions and policy 

impacts can change swiftly, and the exclusion of data beyond 2020 may diminish the 

relevance of the findings in contemporary policy discussions. To address this, the study 

concentrated on identifying persistent macroeconomic trends that are likely to remain 

significant, despite the omission of more current data. 

Methodologically, the study's reliance on the Vector Error Correction Model (VECM) 

presents certain constraints. While VECM is effective for capturing both long-term and short-

term relationships among variables, it operates under the assumption of linearity, potentially 

overlooking non-linear relationships or structural breaks in the data. Given the complexity of 

economic interactions, which are often influenced by multifaceted factors, this could lead to 

an incomplete understanding of the dynamics at play. To mitigate this, the research included 

robustness checks, such as alternative model specifications and diagnostic tests, to validate 

the assumptions and outcomes of the VECM. 
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Additionally, while the study successfully identified significant relationships among CO2 

emissions and its macroeconomic determinants, it did not delve into external factors like 

global economic conditions, geopolitical events, or climate change, which may also influence 

CO2 emission dynamics. The omission of these external influences could result in a partial 

understanding of the factors affecting CO2 emissions in Uganda. The study acknowledged 

these gaps in the discussion and proposed future research avenues to incorporate these 

external variables. 

Time constraints also posed a challenge, as the research period was relatively short compared 

to the extensive demands of data collection, analysis, and interpretation. This limitation may 

have restricted the depth of the analysis and the exploration of additional variables or 

methodologies that could have enhanced the study. A more extended research timeframe 

could have facilitated a more comprehensive examination of the data and allowed for the 

inclusion of more rigorous checks and balances. To address this, the study implemented 

efficient research methodologies and time management strategies to ensure thorough analysis 

within the available timeframe. Future research endeavors with extended periods could yield 

even deeper insights. 

Finally, the focus on Uganda inherently limits the generalizability of the findings to other 

contexts. While the results provide critical insights into the determinants of CO2 emissions in 

Uganda, different countries possess unique economic structures, policy environments, and 

external influences that could result in divergent CO2 emission dynamics. Therefore, caution 

is advised when extrapolating these findings to other settings without considering the specific 

economic conditions and policy frameworks in those locales. The study highlighted Uganda's 

unique contextual factors and recommended that similar investigations be conducted in other 

countries to validate and compare findings. 

While this study offers important insights into the macroeconomic determinants of CO2 

emissions in Uganda, it is essential to recognize these limitations when interpreting the 

findings and considering their implications for policy and further research. 

 

5.5 Recommendations of the study 

Based on the findings and conclusions of this study, several recommendations are proposed to 

enhance economic growth in Uganda through financial development and mobile phone 

penetration. 
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5.5.1 Recommendation on the Effect of Annual Deforestation Rate on CO2 Emissions in 

Uganda 

Given the significant positive relationship between deforestation and CO2 emissions, it is 

crucial to implement robust forest conservation and management strategies. The Ugandan 

government should prioritize the enforcement of existing laws that protect forested areas and 

expand reforestation programs. Additionally, promoting sustainable agricultural practices that 

reduce the need for land clearance could help curb the annual deforestation rate. Awareness 

campaigns and community involvement are also essential to ensure the long-term success of 

these initiatives. 

5.5.2 Recommendation on the Effect of Manufacturing Value Added on CO2 Emissions 

in Uganda 

The positive correlation between manufacturing growth and CO2 emissions indicates the 

need for adopting cleaner technologies and enhancing energy efficiency within the industrial 

sector. The government should incentivize the transition to greener manufacturing processes 

through tax breaks, subsidies, and technical support for industries that adopt low-carbon 

technologies. Moreover, policies encouraging the development and use of renewable energy 

sources in manufacturing can significantly reduce the sector's carbon footprint. 

5.5.3 Recommendation on the Effect of Urban Population on CO2 Emissions in Uganda 

The inverse relationship between urban population growth and CO2 emissions suggests that 

urbanization, if managed effectively, can lead to environmental benefits. It is recommended 

that urban planning policies focus on enhancing public transportation, expanding access to 

clean energy, and promoting energy-efficient building designs. Additionally, investing in 

sustainable urban infrastructure and implementing policies that reduce reliance on fossil fuels 

in cities can further leverage the environmental benefits associated with urban population 

growth. 

5.5.4 Recommendation on the Effect of GDP per Capita on CO2 Emissions in Uganda 

The negative relationship between GDP per capita and CO2 emissions highlights the 

potential for economic growth to be aligned with environmental sustainability. Policymakers 

should continue to promote economic policies that encourage investment in clean 

technologies and sustainable practices. This can be achieved through financial incentives for 

businesses that prioritize environmental responsibility and by supporting research and 

development in green technologies. Furthermore, raising public awareness about the 
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environmental impacts of consumption and encouraging sustainable lifestyle choices can 

complement these efforts. 

Based on the findings and limitations of this study on CO2 emissions and their determinants 

in Uganda, several additional recommendations are proposed to enhance understanding and 

inform policy decisions: 

Enhance Data Collection Efforts 

To improve the robustness of future research, it is crucial to enhance the collection of time 

series data on CO2 emissions and their determinants. This includes investing in 

comprehensive data systems that capture not only annual but also quarterly and monthly data 

across various sectors. Collaboration with governmental and non-governmental organizations 

can facilitate the gathering of high-quality data on deforestation rates, manufacturing outputs, 

urban demographics, and economic indicators. 

Expand Temporal Scope of Research 

Future studies should consider extending the temporal scope beyond 2020 to capture more 

recent economic developments and their impacts on CO2 emissions. Incorporating data from 

subsequent years will allow researchers to analyze the effects of emerging trends, policies, 

and global events, thus providing a more current and relevant context for understanding 

emission dynamics. 

Adopt Diverse Methodological Approaches 

Researchers are encouraged to explore diverse methodological frameworks that account for 

non-linear relationships and structural breaks in the data. Techniques such as machine 

learning models or non-linear regression analysis could provide deeper insights into the 

complex interactions among variables influencing CO2 emissions. Additionally, integrating 

qualitative methods could enrich the analysis by incorporating stakeholder perspectives on 

environmental policies and practices. 

Incorporate External Influences 

Future research should aim to include external factors such as global economic conditions, 

geopolitical influences, and climate variability in the analysis of CO2 emissions. By 

acknowledging and integrating these external variables, researchers can develop a more 

comprehensive understanding of the multifaceted drivers of emissions, leading to more 

effective policy recommendations. 
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Focus on Policy Implications 

Given the significant relationships identified between CO2 emissions and economic 

determinants, policymakers should prioritize the development of sustainable economic 

policies that balance industrial growth with environmental protection. This includes 

promoting green technologies, sustainable manufacturing practices, and urban planning 

initiatives that reduce emissions while fostering economic development. 

Conduct Comparative Studies 

To enhance the generalizability of findings, comparative studies across different countries or 

regions with similar economic structures but varying environmental policies should be 

conducted. Such research could help identify best practices and effective strategies for 

managing CO2 emissions while considering local contexts. 

Engage Stakeholders in Policy Formulation 

It is essential to involve various stakeholders, including local communities, businesses, and 

environmental organizations, in the formulation of policies aimed at reducing CO2 emissions. 

Engaging these groups can foster collaboration and ensure that policies are well-informed and 

widely supported, ultimately leading to more successful implementation. 

Promote Public Awareness and Education 

Raising public awareness about the impact of CO2 emissions and the importance of 

sustainable practices is vital. Educational campaigns can empower citizens to participate in 

emission reduction efforts, such as advocating for reforestation, supporting local sustainable 

businesses, and adopting eco-friendly practices in their daily lives. By implementing these 

recommendations, future research can contribute to a more nuanced understanding of CO2 

emissions in Uganda and inform effective strategies for sustainable development and 

environmental stewardship. 

5.6 Contributions of the Study 

 This study makes several important contributions to the understanding of the determinants of 

CO2 emissions in Uganda, providing insights that are valuable for both academic research 

and policy formulation. 

5.6.1 Empirical Insights on Deforestation and CO2 Emissions 
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One of the key contributions of this study is its empirical analysis of the relationship between 

deforestation and CO2 emissions in Uganda. By demonstrating a significant positive 

correlation, the study highlights the critical impact of deforestation on environmental 

degradation in Uganda. This finding contributes to the broader literature on environmental 

economics by providing specific evidence from a developing country context, thereby 

enriching the global understanding of the environmental consequences of land-use changes. 

5.6.2 Industrial Growth and Environmental Impact 

The study also contributes to the discourse on the environmental implications of 

industrialization in Uganda. By establishing a positive relationship between manufacturing 

value added and CO2 emissions, the research underscores the environmental costs associated 

with industrial expansion. This finding is particularly relevant for policymakers and 

stakeholders in developing economies, offering empirical evidence that can inform strategies 

to balance industrial growth with environmental sustainability. 

5.6.3 Urbanization and CO2 Emissions 

Another significant contribution of this study is its analysis of the relationship between urban 

population growth and CO2 emissions, which revealed a surprising inverse correlation. This 

counterintuitive finding challenges conventional wisdom and suggests that urbanization, 

when coupled with effective environmental policies, can lead to reductions in CO2 emissions. 

This contribution is valuable for urban planners and policymakers, highlighting the potential 

of urbanization to contribute positively to environmental outcomes if managed appropriately. 

5.6.4 Economic Growth and Environmental Sustainability 

The study provides evidence supporting the Environmental Kuznets Curve hypothesis in the 

context of Uganda, showing that higher GDP per capita is associated with lower CO2 

emissions. This finding contributes to the ongoing debate on the relationship between 

economic growth and environmental sustainability, particularly in developing countries. It 

underscores the potential for economic development to be aligned with environmental goals, 

offering a hopeful perspective on the possibility of achieving sustainable development. 

5.6.5 Methodological Contributions 
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Methodologically, the study contributes to the literature by applying a Vector Error 

Correction Model (VECM) to analyze the long-term and short-term relationships between 

CO2 emissions and their determinants in Uganda. The use of VECM in this context provides 

a robust framework for understanding the dynamic interactions between economic variables 

and environmental outcomes, making a methodological contribution to studies in 

environmental economics. 

Overall, this study enriches the understanding of the complex relationships between 

economic development, urbanization, industrialization, and environmental sustainability in 

Uganda. It provides valuable insights for both scholars and policymakers, offering evidence-

based recommendations that can guide future research and policy initiatives aimed at 

reducing CO2 emissions and promoting sustainable development. 

5.7 Areas for further research 

Building upon the findings and limitations of this study, several areas for future research are 

identified to further deepen the understanding of CO2 emissions and their determinants in 

Uganda. 

5.7.1 Expanding Temporal Scope and Data Granularity 

Future research should focus on expanding the temporal scope beyond the year 2020 to 

incorporate more recent data and capture the effects of new economic policies, global events, 

and technological advancements on CO2 emissions. Additionally, increasing the granularity 

of data collection to include monthly or quarterly intervals can provide more detailed insights 

into the temporal dynamics of CO2 emissions and allow for more precise modeling of the 

relationships between economic activities and environmental outcomes. 

5.7.2 Investigating Non-Linear Relationships and Structural Breaks 

Given the complexity of the interactions between economic growth, industrialization, 

urbanization, and environmental sustainability, future studies should explore non-linear 

relationships and potential structural breaks within the data. Employing advanced 

econometric techniques such as non-linear regression models, threshold models, or machine 

learning algorithms could reveal hidden patterns and provide a more nuanced understanding 

of the determinants of CO2 emissions. 
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5.7.3 Incorporating External and Contextual Factors 

Further research should aim to incorporate external factors such as global economic 

conditions, geopolitical shifts, and climate change impacts into the analysis of CO2 emissions 

in Uganda. By integrating these broader influences, future studies can offer a more 

comprehensive view of the determinants of emissions and their interactions with both 

domestic and international developments. 

5.7.4 Comparative Analysis Across Regions and Sectors 

Conducting comparative studies across different regions within Uganda or across countries 

with similar economic profiles could provide valuable insights into how varying policy 

environments and economic structures influence CO2 emissions. Additionally, sector-specific 

analyses, particularly focusing on agriculture, energy, and transportation, could help identify 

targeted strategies for reducing emissions within those key areas. 

5.7.5 Longitudinal Studies on Policy Impacts 

There is a need for longitudinal studies that track the impact of specific environmental 

policies, such as reforestation initiatives or clean energy adoption programs, on CO2 

emissions over time. Such studies would provide critical evidence on the effectiveness of 

these interventions and offer guidance on best practices for policymakers aiming to mitigate 

emissions in Uganda. 

5.7.6 Exploring the Role of Technology and Innovation 

Future research should explore the role of technological advancements and innovation in 

reducing CO2 emissions in Uganda. This could include studies on the adoption of renewable 

energy technologies, the efficiency of industrial processes, and the potential of digital 

technologies to optimize resource use and minimize environmental impact. Understanding 

the barriers to and drivers of technology adoption could help formulate strategies to 

accelerate the transition to a low-carbon economy. 

5.7.7 Public Perception and Behavioral Studies 
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Research into public perceptions and behaviours regarding environmental issues and CO2 

emissions could provide valuable insights for designing effective awareness campaigns and 

policy interventions. Understanding the socio-cultural factors that influence public attitudes 

towards deforestation, urbanization, and energy use can help tailor policies that are both 

effective and socially acceptable. 

By pursuing these areas of research, scholars can contribute to a more detailed and actionable 

understanding of the factors driving CO2 emissions in Uganda, thereby informing more 

effective strategies for achieving sustainable development and environmental protection. 
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APPENDIX 1: Table 4.9 Error Correction Estimates for the determinants of CO2 

emissions in Uganda (1990-2020) 

      
      

Error Correction: D(LNCO2E) D(LNADR) D(LNMVA) D(LNUP) D(LNGDPC) 

      
      

COINTEQ1 -0.056730 -0.004461 -0.103869  0.000321 -0.000350 

  (0.01945)  (0.00206)  (0.04083)  (0.00049)  (0.02851) 

 [-2.91632] [-2.17016] [-2.54372] [0.65162] [-0.01229] 

      

D(LNCO2E(-1))  0.742333 -0.009421 -0.196895  0.001891 -0.064646 

  (0.10829)  (0.01144)  (0.22731)  (0.00274)  (0.15870) 

 [6.85509] [-0.82336] [-0.86619] [0.69045] [-0.40736] 

      

D(LNCO2E(-2))  0.017967  0.001670  0.032520 -5.95E-06 -0.003767 

  (0.13640)  (0.01441)  (0.28633)  (0.00345)  (0.19990) 

 [0.13172] [0.11589] [0.11358] [-0.00173] [-0.01884] 

      

D(LNCO2E(-3)) -0.136907 -0.005106 -0.062449  0.001056 -0.192396 

  (0.10638)  (0.01124)  (0.22330)  (0.00269)  (0.15590) 

 [-1.28697] [-0.45429] [-0.27966] [0.39257] [-1.23412] 

      

D(LNADR(-1))  0.356881  0.634092 -2.438436  0.006775 -1.746513 

  (1.01209)  (0.10694)  (2.12449)  (0.02559)  (1.48320) 

 [0.35262] [5.92929] [-1.14777] [0.26474] [-1.17753] 

      

D(LNADR(-2))  0.573040  0.045761  1.012657 -0.002789 -0.045901 

  (1.28150)  (0.13541)  (2.69002)  (0.03240)  (1.87802) 

 [0.44716] [0.33795] [0.37645] [-0.08606] [-0.02444] 

      

D(LNADR(-3))  1.196955 -0.351615 -1.622595 -0.004949 -2.332454 

  (1.10129)  (0.11637)  (2.31175)  (0.02785)  (1.61393) 

 [1.08686] [-3.02156] [-0.70189] [-0.17771] [-1.44520] 

      

D(LNMVA(-1)) -0.028558 -0.001897  0.694129 -0.000336 -0.002912 

  (0.05797)  (0.00613)  (0.12169)  (0.00147)  (0.08496) 

 [-0.49261] [-0.30962] [5.70401] [-0.22945] [-0.03427] 

      

D(LNMVA(-2))  0.003160 -1.45E-06  0.022750 -6.56E-05  0.005933 

  (0.07173)  (0.00758)  (0.15056)  (0.00181)  (0.10511) 

 [0.04406] [-0.00019] [0.15110] [-0.03615] [0.05644] 

      

D(LNMVA(-3))  0.005262  0.006065 -0.098940 -1.68E-05 -0.039727 

  (0.05703)  (0.00603)  (0.11972)  (0.00144)  (0.08358) 

 [0.09226] [1.00637] [-0.82642] [-0.01166] [-0.47530] 

      

D(LNUP(-1))  2.082828  0.142847 -0.192749  0.510132 -1.597775 

  (3.78106)  (0.39953)  (7.93690)  (0.09561)  (5.54110) 
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 [0.55086] [0.35754] [-0.02429] [5.33568] [-0.28835] 

      

D(LNUP(-2))  0.987451  0.074700  2.184475 -0.055864 -0.290375 

  (4.28120)  (0.45237)  (8.98675)  (0.10825)  (6.27404) 

 [0.23065] [0.16513] [0.24308] [-0.51605] [-0.04628] 

      

D(LNUP(-3))  2.518763  0.211709  9.768259  0.299703  2.189554 

  (3.64686)  (0.38535)  (7.65521)  (0.09221)  (5.34443) 

 [0.69067] [0.54940] [1.27603] [3.25007] [0.40969] 

      

D(LNGDPC(-1))  0.017504 -0.001820  0.013873  3.07E-05  0.808544 

  (0.08232)  (0.00870)  (0.17280)  (0.00208)  (0.12064) 

 [0.21263] [-0.20927] [0.08028] [0.01477] [6.70205] 

      

D(LNGDPC(-2)) -0.032266 -0.002704 -0.051997  9.05E-05  0.004138 

  (0.10751)  (0.01136)  (0.22568)  (0.00272)  (0.15756) 

 [-0.30012] [-0.23807] [-0.23040] [0.03329] [0.02626] 

      

D(LNGDPC(-3)) -0.030998 -0.002052  0.033657 -0.000148  0.063457 

  (0.08900)  (0.00940)  (0.18682)  (0.00225)  (0.13043) 

 [-0.34829] [-0.21821] [0.18015] [-0.06570] [0.48652] 

      

C -0.083425 -0.003832 -0.156940  0.003553  0.016234 

  (0.04862)  (0.00514)  (0.10206)  (0.00123)  (0.07126) 

 [-1.71578] [-0.74576] [-1.53766] [2.88970] [0.22783] 

      
      

R-squared  0.643517  0.505978  0.594979  0.633447  0.726549 

Adj. R-squared  0.588141  0.429237  0.532063  0.576506  0.684071 

Sum sq. resids  0.018433  0.000206  0.081223  1.18E-05  0.039588 

S.E. equation  0.013378  0.001414  0.028081  0.000338  0.019605 

F-statistic  11.62085  6.593306  9.456719  11.12474  17.10421 

Log likelihood  356.5929  626.2903  267.6106  797.8937  310.7303 

Akaike AIC -5.659881 -10.15484 -4.176843 -13.01490 -4.895505 

Schwarz SC -5.264986 -9.759944 -3.781948 -12.62000 -4.500610 

Mean dependent  0.015973  0.003407  0.009120  0.014757  0.012271 

S.D. dependent  0.020845  0.001871  0.041051  0.000520  0.034879 

      
      

Determinant resid covariance (dof adj.)  5.07E-24    

Determinant resid covariance  2.36E-24    

Log likelihood  2412.770    

Akaike information criterion -38.71283    

Schwarz criterion -36.62221    

Number of coefficients  90    

      
      

Source: Author’s analysis of WDI data 
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APPENDIX 2: ANNUAL SERIES FOR CO2 EMISSIONS AND ITS DETERMINANTS IN 

UGANDA (ANNUAL DEFORESTATION RATE, MANUFACTURING VALUE ADDED, 

URBAN POPULATION AND GDP PER CAPITA 

 

YEAR CO2E ADR MVA UP GDPC 

1990 790.0 1.154040 5.341026 1922173 244.7541 

1991 810.0 1.167684 5.438036 2056398 182.7945 

1992 820.0 1.181228 5.820887 2188421 151.9765 

1993 820.0 1.194923 5.598406 2326622 165.4650 

1994 730.0 1.211591 6.030380 2471224 198.2821 

1995 960.0 1.224167 6.229189 2622274 278.3166 

1996 1070.0 1.239573 7.147087 2779697 284.4568 

1997 1130.0 1.255423 7.787954 2943834 286.5727 

1998 1290.0 1.271400 8.281100 3116698 292.1695 

1999 1320.0 1.293934 8.893208 3300326 257.6786 

2000 1330.0 1.304152 7.098978 3496913 257.8296 

2001 1350.0 1.321278 7.061989 3707368 235.8530 

2002 1540.0 1.339056 7.354144 3932636 241.8689 

2003 1620.0 1.358171 7.055684 4172736 250.6906 

2004 1770.0 1.375884 6.364934 4427392 292.4727 

2005 2230.0 1.395232 7.009316 4695306 330.6029 

2006 2600.0 1.395463 7.090616 4978580 346.7685 

2007 2940.0 1.433694 7.125823 5277759 401.7092 

2008 3180.0 1.435013 7.306965 5594570 473.3028 

2009 3410.0 1.477722 16.53152 5929787 799.9296 

2010 3850.0 1.497497 16.81475 6285551 824.7377 

2011 4160.0 1.526810 17.14687 6661208 837.0959 

2012 3910.0 1.557268 16.72571 7058269 796.7111 

2013 4270.0 1.570194 15.61664 7480857 819.7579 

2014 4740.0 1.571553 15.52205 7937455 897.5097 

2015 4860.0 1.620621 16.85192 8432534 864.1801 

2016 5670.0 1.621321 16.29974 8970229 753.6844 

2017 5840.0 1.658271 15.52300 9549002 766.1776 

2018 6130.0 1.679982 15.75142 10158400 793.1281 

2019 5943.0 1.709359 15.52010 10784514 823.0247 

2020 5674.6 1.733953 15.89301 11414209 846.7672 
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APPENDIX 3: QUARTERLY TRANSFORMED SERIES FOR CO2 EMISSIONS AND ITS 

DETERMINANTS IN UGANDA (ANNUAL DEFORESTATION RATE, 

MANUFACTURING VALUE ADDED, URBAN POPULATION AND GDP PER CAPITA 

 

QUARTER LNCO2E LNADR LNMVA LNUP LNGDPC 

1990Q1 6.672033 0.143268 1.675418 14.46897 5.500254 

1990Q2 6.678342 0.146220 1.679948 14.48627 5.434875 

1990Q3 6.684612 0.149163 1.684458 14.50329 5.364921 

1990Q4 6.690842 0.152097 1.688948 14.52001 5.289702 

1991Q1 6.697034 0.155023 1.693418 14.53647 5.208362 

1991Q2 6.700116 0.157918 1.710865 14.55239 5.165300 

1991Q3 6.703188 0.160805 1.728014 14.56806 5.120300 

1991Q4 6.706251 0.163684 1.744873 14.58349 5.073178 

1992Q1 6.709304 0.166554 1.761453 14.59869 5.023726 

1992Q2 6.709304 0.169449 1.751851 14.61436 5.045672 

1992Q3 6.709304 0.172335 1.742157 14.62978 5.067147 

1992Q4 6.709304 0.175212 1.732368 14.64497 5.088170 

1993Q1 6.709304 0.178082 1.722482 14.65993 5.108760 

1993Q2 6.681482 0.181563 1.741588 14.67535 5.157153 

1993Q3 6.652863 0.185032 1.760336 14.69053 5.203312 

1993Q4 6.623401 0.188489 1.778739 14.70549 5.247433 

1994Q1 6.593045 0.191934 1.796810 14.72022 5.289691 

1994Q2 6.668863 0.194526 1.805018 14.73539 5.385828 

1994Q3 6.739337 0.197111 1.813160 14.75033 5.473528 

1994Q4 6.805169 0.199689 1.821235 14.76505 5.554153 

1995Q1 6.866933 0.202260 1.829246 14.77955 5.628759 

1995Q2 6.895176 0.205402 1.865422 14.79445 5.634260 

1995Q3 6.922644 0.208533 1.900336 14.80913 5.639730 

1995Q4 6.949377 0.211655 1.934071 14.82359 5.645170 

1996Q1 6.975414 0.214767 1.966705 14.83785 5.650581 

1996Q2 6.989335 0.217958 1.988874 14.85251 5.652439 

1996Q3 7.003065 0.221140 2.010563 14.86695 5.654294 

1996Q4 7.016610 0.224311 2.031791 14.88119 5.656145 

1997Q1 7.029973 0.227472 2.052578 14.89522 5.657992 

1997Q2 7.064759 0.230649 2.068285 14.90980 5.662863 

1997Q3 7.098376 0.233815 2.083748 14.92416 5.667710 

1997Q4 7.130899 0.236972 2.098976 14.93832 5.672534 

1998Q1 7.162397 0.240118 2.113976 14.95228 5.677334 

1998Q2 7.168195 0.244540 2.132286 14.96691 5.647377 

1998Q3 7.173958 0.248941 2.150267 14.98132 5.616495 

1998Q4 7.179689 0.253324 2.167931 14.99552 5.584628 

1999Q1 7.185387 0.257687 2.185288 15.00953 5.551713 

1999Q2 7.187279 0.259659 2.133533 15.02431 5.551860 

1999Q3 7.189168 0.261628 2.078953 15.03888 5.552006 

1999Q4 7.191053 0.263592 2.021221 15.05324 5.552152 

2000Q1 7.192934 0.265553 1.959951 15.06739 5.552299 

2000Q2 7.196687 0.268830 1.958647 15.08232 5.530759 

2000Q3 7.200425 0.272097 1.957342 15.09704 5.508746 
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2000Q4 7.204149 0.275354 1.956035 15.11154 5.486236 

2001Q1 7.207860 0.278599 1.954727 15.12583 5.463209 

2001Q2 7.242440 0.281957 1.965016 15.14091 5.469565 

2001Q3 7.275865 0.285304 1.975201 15.15576 5.475882 

2001Q4 7.308208 0.288640 1.985283 15.17040 5.482158 

2002Q1 7.339538 0.291965 1.995264 15.18482 5.488396 

2002Q2 7.352441 0.295527 1.985066 15.19997 5.497473 

2002Q3 7.365180 0.299077 1.974763 15.21489 5.506468 

2002Q4 7.377759 0.302614 1.964353 15.22959 5.515383 

2003Q1 7.390181 0.306139 1.953834 15.24408 5.524219 

2003Q2 7.413066 0.309394 1.929054 15.25922 5.565042 

2003Q3 7.435438 0.312639 1.903645 15.27414 5.604263 

2003Q4 7.457321 0.315873 1.877573 15.28884 5.642003 

2004Q1 7.478735 0.319097 1.850804 15.30332 5.678371 

2004Q2 7.541683 0.322606 1.875799 15.31834 5.710444 

2004Q3 7.600902 0.326103 1.900184 15.33313 5.741521 

2004Q4 7.656810 0.329588 1.923989 15.34771 5.771660 

2005Q1 7.709757 0.333060 1.947240 15.36207 5.800918 

2005Q2 7.750399 0.333102 1.950136 15.37704 5.813068 

2005Q3 7.789455 0.333144 1.953023 15.39179 5.825072 

2005Q4 7.827042 0.333185 1.955902 15.40633 5.836934 

2006Q1 7.863267 0.333227 1.958772 15.42066 5.848657 

2006Q2 7.895436 0.340052 1.960013 15.43557 5.887502 

2006Q3 7.926603 0.346832 1.961252 15.45026 5.924894 

2006Q4 7.956827 0.353566 1.962489 15.46474 5.960938 

2007Q1 7.986165 0.360255 1.963725 15.47901 5.995728 

2007Q2 8.006368 0.360485 1.970060 15.49391 6.039320 

2007Q3 8.026170 0.360714 1.976355 15.50858 6.081090 

2007Q4 8.045588 0.360944 1.982611 15.52305 6.121186 

2008Q1 8.064636 0.361174 1.988828 15.53731 6.159735 

2008Q2 8.082557 0.368587 2.263127 15.55218 6.318895 

2008Q3 8.100161 0.375945 2.478154 15.56683 6.456167 

2008Q4 8.117462 0.383250 2.655028 15.58127 6.576850 

2009Q1 8.134468 0.390502 2.805269 15.59550 6.684524 

2009Q2 8.166216 0.393842 2.809543 15.61039 6.692247 

2009Q3 8.196988 0.397171 2.813799 15.62506 6.699911 

2009Q4 8.226841 0.400488 2.818036 15.63951 6.707517 

2010Q1 8.255828 0.403795 2.822256 15.65376 6.715065 

2010Q2 8.275758 0.408677 2.827182 15.66859 6.718804 

2010Q3 8.295299 0.413535 2.832084 15.68321 6.722530 

2010Q4 8.314465 0.418369 2.836962 15.69761 6.726241 

2011Q1 8.333270 0.423181 2.841816 15.71181 6.729939 

2011Q2 8.318132 0.428155 2.835656 15.72660 6.717804 

2011Q3 8.302762 0.433105 2.829459 15.74118 6.705521 

2011Q4 8.287151 0.438031 2.823222 15.75555 6.693085 

2012Q1 8.271293 0.442933 2.816947 15.76971 6.680492 

2012Q2 8.294050 0.445006 2.800231 15.78457 6.687698 

2012Q3 8.316300 0.447075 2.783230 15.79921 6.694852 

2012Q4 8.338067 0.449139 2.765936 15.81363 6.701956 

2013Q1 8.359369 0.451199 2.748337 15.82786 6.709009 

2013Q2 8.386515 0.451415 2.746822 15.84300 6.732444 

2013Q3 8.412943 0.451632 2.745304 15.85792 6.755343 

2013Q4 8.438691 0.451848 2.743784 15.87262 6.777728 

2014Q1 8.463792 0.452064 2.742262 15.88710 6.799624 

2014Q2 8.470102 0.459839 2.763455 15.90258 6.790297 

2014Q3 8.476371 0.467555 2.784208 15.91781 6.780882 

2014Q4 8.482602 0.475211 2.804539 15.93282 6.771377 

2015Q1 8.488794 0.482809 2.824465 15.94761 6.761781 
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2015Q2 8.529616 0.482917 2.816239 15.96342 6.729294 

2015Q3 8.568836 0.483025 2.807946 15.97899 6.695715 

2015Q4 8.606577 0.483133 2.799583 15.99432 6.660970 

2016Q1 8.642944 0.483241 2.791149 16.00942 6.624974 

2016Q2 8.650412 0.488923 2.779164 16.02542 6.629109 

2016Q3 8.657824 0.494572 2.767034 16.04117 6.633228 

2016Q4 8.665182 0.500190 2.754754 16.05668 6.637329 

2017Q1 8.672486 0.505776 2.742323 16.07195 6.641414 

2017Q2 8.684824 0.509044 2.745995 16.08778 6.650169 

2017Q3 8.697012 0.512301 2.749653 16.10336 6.658849 

2017Q4 8.709052 0.515547 2.753299 16.11870 6.667453 

2018Q1 8.720950 0.518783 2.756931 16.13381 6.675985 

2018Q2 8.713294 0.523145 2.753252 16.14910 6.685364 

2018Q3 8.705580 0.527489 2.749561 16.16416 6.694657 

2018Q4 8.697805 0.531813 2.745855 16.17900 6.703863 

2019Q1 8.689969 0.536119 2.742136 16.19362 6.712986 

2019Q2 8.678615 0.539709 2.748125 16.20811 6.720172 

2019Q3 8.667129 0.543287 2.754078 16.22240 6.727307 

2019Q4 8.655511 0.546852 2.759996 16.23648 6.734391 

2020Q1 8.643755 0.550404 2.765880 16.25037 6.741426 

2020Q2 8.631860 0.553943 2.771728 16.26407 6.748411 

2020Q3 8.619822 0.557470 2.777543 16.27758 6.755348 

2020Q4 8.607637 0.560985 2.783325 16.29091 6.762237 


